

V..~ ~ ~ ~ ~ ~ ~ ~ ~~7 Z 7- 7"-.........*. .,.------...*.-r -

SLEUPIIY ..ASSIFICATION OF iWIS PAGI (When D EMa

20. (Continued)
heuristic is likely to be significantly better in terms of worst-case performance
Two Distributed Linked-Cluster Algorithms are presented. The first, GLCA mini-
mizes the number of clusters identically to Greedy. The ommunication complexity

C, of this algorithm ignoring collision is O(N2 -N2--) for sparse graphs and
O(MN - MV2MI) for both dense and sparse graphs. The second, Tree Linked
Cluster Algorithm (TLCA) runs in C = O(M) and T = O(N) (also ignoring collisions)
The number of clusters is not minimized as well as GCLA, but communication costs
are significantly lower. Schemes for collision minimization and resolution -are
suggested for both algorithms.

I7-

S, N 0102- LP- O14- 6601

5I9CUNITY CLAShI FICATION OF ?WIS rA14& h* DOC& rn/m#W
,_..-,-..- . -. -..., - - -.-.y .--..-..<. .. . ' .-. . .- .- .- .<.-....... - -, ..-.< .. -.- . -

* NLMNZU G TE NUIvMER OF CLUSTERS LN

MOBILE PACKET RtDIO NETWOPLKS

by

Abhay KumarParekh Aocesiof For

B.Z.S. Job=s Hopkins University !,71 GRA&I

(December 198.) DTIc TAB

SUBMITTED LN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE By

DEGREE OF Distributicn/

Avail- -ity Codes

VA E OAvail and/or
STE] OF S -E Dist Special

LN OPERA.TIONS RESEARCH

at the

MASSACHUSETTS 24STITUTE OF TECHNOLOGY

September 1985

@1985 Massachusetts Institute of Technology

Signature of Author - August 4, 1985

Certified by '"'" -
Robert G. Gallager

Thesis Supervisor

Accepted by
Jeremy F. Shapiro

Co-Director, Operations Research Center

85 10 11 024
'".* * -. ~

MINIMIZING THE NUMBER OF CLUSTERS IN

MOBILE PACKET RADIO NETWORKS

by
*." Abhay Kumar Parekh

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE

DEGREE OF

MASTER OF SCIENCE
IN OPERATIONS RESEARCH

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 1985

ABSTRACT

Linked-Cluster Architectures have been suggested in the literature for organizing the

radios of a stationless mobile Packet Radio Network (PRN). Existing algorithms for achiev-

ing such architectures do not attempt to minimize the number of clusters and gateway
nodes, aims which we claim are essential to the implementation of any Multiple Access

scheme. The problem is formulated on graphs in 3 different ways, all of which are NP-
complete. It is also shown that c-Polynomial Time Algorithms are not likely to exist. A
simple centralized heuristic, Greedy is analyzed in terms of its worst case fractional error.
It is then argued that no efficient heuristic is likely to be significantly better in terms of
worst-case performance. Two Distributed Linked-Cluster Algorithms are presented. The

first, GLCA minimizes the number of clusters identically to Greedy. The communication
complexity, C, of this algorithm ignoring collision is O(N' - Nv2M+"1) for sparse graphs

and O(MN - MV2X?+T) for dense graphs with N nodes and M edges. The time com-
plexity, T, is O(N - V1+) for both dense and sparse graphs. The second, Tree Linked

Cluster Algorithm (TLCA) runs in C = O(M) and T = O(N) (also ignoring collisions).

The number of clusters is not minimized as well as in GCLA, but communication costs are
significantly lower. Schemes for collision minimization and resolution are suggested for both

algorithms.

Thesis Supervisor: Prof. Robert G. Gallager
Title: Professor of Electrical Engineering and Computer Science.

... ' ..--.-.. , -.

ACXNOWLED GEUMNTS

I would like to thank Robert Gallager for supervising this thesis with care, consid-

eration and interest. It has been a pleasure working for him.

Thanks are due to Prof. David Shimoys for giving me a good overview of Approxi-

mate Algorithms, and providing the motivation for the proof of Theorem 2.2. I am sure the

reader will join me in thanking Art Giordani for his fine artwork. Thanks also to Patrick

Hosein for helping with the graphs of Figure 2.7.

The genial atmosphere of the Laboratory for Information and Decision Systems, and

the numerous conversations I have had with its graduate students are much appreciated.

There have many people who have made my stay at MIT a very enjoyable one. I

thank them all for the interesting discussions we have had on subjects unrelated to Tech-

nology and Engineering. Dicki Munsif, despite being so far away, gave me all the love,

understanding and friendship that could ever be desired.

Finally, and most importantly I would like to acknowledge the immeasurable con-

tribution of my parents. Their love, advice and sacrifices have made everything possible.

This thesis is dedicated to them with the utmost love and respect.

*.%

TABLE OF CONTENTS

PAGE

1 Introduction .. 6

1.1 Technical System Considerations 8

1.2 Multiaccess Methods and the Hidden Terminal Problem 10
1.3 Linked Cluster Architectures ... 11

1.4 The Case for Minimizing the Number of Clusters.............................. 12
1.5 Previous Work ... 15

1.6 The PRN Model.. 17

1.7 Outline of the Thesis ... 19

2 Computational Complexity of the Centralized Problem 20

2.1 Formulating the Problem .. 21

2.2 Some Definitions ... 22

2.3 NP-Completeness Results.. 23
2.4 Measure of Performance of Heuristics 26

2.5 e -Polynomial Time Approximate Algorithms 29

2.6 Approximate Algorithms for DSP- The Greedy Algorithm 33
2.7 Other Approximate Algorithm .. 43

2.8 Summary.. 46

3 Linked-,Cluster Algorithms.. 48

3.1 The Distributed Greedy Algorithm (DISTG) Framework 48
3.2 Performance Measure for Distributed Algorithms.............................. 49

3.3 The Distributed Greedy (DISTG) Algorithm 51
3.4 Correctness of DISTG .. 62
3.5 Equivalence of DISTG and Greedy .. 67
3.8 Correctness of DISTG .. 69
3.7 The Greedy Linked-Cluster Algorithm (OLCA)............................... 70

3.8 The Tree Linked-Cluster Algorithm (TWCA) 72
3.9 Summary ... 7

4 Conclusion and Suggestions for Further Work 78
4.1 Conclusion .. 78
4.2 Suggesions for Further Work ... 79

References.. 82

TABLE OF FIGURES

PAGE
1.1. An example of the Capture Assumption 9

1.2. Two different Linked-Cluster Organizations for a Network 12

1.3. An example of an ITF organization .. 16

1.4. Comparing the performance of ITF with the optimum 18

2.1. Comparing DSP, CDSP, and SCDSP ... 22
2.2. mustration of the construction in Lemma 2.1 (a) 24
2.3. lustration of the construction in Lemma 2.1 (c) 25

2.4. mustration of the construction in Theorem 2.2(a)(ii) 30

2.5. illustration of the construction in Theorem 2.3(a) 32
2.6. B2,3 37
2.7. Relationship of 1 with N and K. ... 40

2.8. Bj.: .. 44
3.1. Why broadcast is necessary in DoTaken 55
3.2. illustration of the effects of DoTaken ... 56

3.3. mustration of the effects of TwoAway .. 58
3.4. Musration of the effects of OneTwoThreeAway 60
3.5. TOLA does not minimize the number of clusters as well as Greedy 76
4.1. Forbidden subgraphs of Lemma 4.1. 80
4.2. Forbidden subgraph of Lemma 4.2 .. 80

CHAPTER I

INTRODUCTION

A Packet Radio Network (PRN) is a communications network in which a set of

geographically distributed, possibly mobile computers communicate over a shared broadcast

medium (called the access channel.) The network is packet switched to facilitate the efficient

management of bursty user traffic. The concept of bypassing telephone lines in favor of space

as the transmitting medium for packet networks originated at the University of Hawaii in the

early 1970's. Their so-called ALOHA system consisted of a single omnidirectional antenna

which served as a hub, or station for all terminaa communication. The radio channel was

divided into two: a multiaccess channel, and a broadcast channel which was used by the

central computer to communicate with the terminals.

The success of the ALOHA network stimulated extensive research in the area, and

the model was extended to suit a variety of tactical and civilian situations, some of which

are are listed below:

(1) Networking mobile radios in the battlefield [1].

(2) Communication in a Naval Battlegroup [5].

(3) Commercial applications in highly uneven terrain [1].

(4) Cellular Mobile Telephones [12].

Notice that these applications require that the users be possibll mobile, which intro-

6

duces the problem of designing protocols for networks whose topology is subject to change.

Another issue which is immediately raised is the effective utilization of the access channel

when all the terminals are not within line of sight of each other. Suggested future ap-

plications for PRN's bank critically on the awumption that these problems have been, or

can be solved. For example, Nelson has noted the suitability of PRN's to establish com-

munications following a natural disaster such as an earthquake, because of their "flexible

topologies" [31; Kahn has refered to "personal terminals" which could be carried about by

individuals allowing them to communicate, via a PRN, with other mobile users, and with

a variety of computer resources[2]; and Licklider[4] has considered a rather inventive appli-

cation in which the physical condition of (mobile) elderly persons, equipped with various

sensor devices, is continuously monitored by a home computer through a PR.N.

In some of these applications, such as Cellular Mobile Telephones, it is realistic to

assume that the network can be controlled by stations, which serve as fixed reference points

in the otherwise mobile network. Much progress has been made on this front, as is clear

from the rapidly growing use of Mobile Telephones. However, in many military scenarios,

such as networking radios in a battlefield, one cannot assume the feasiblity of building

stations. This, coupled with the fact that mutual line of sight among all the radios cannot

be assured, complicates the problem of designing efficient protocols for network organization

and mangagement, and presents to the PRN designer a challenge she has not as yet met

successfully.

The next few sections serve to justify the previous statement, and to aquaint the

reader briefly, with some of the design issues of Mobile PRN's. These sections will also

allow us to present the specific problem the rest of thesis will address, and to present the

model it will use to do this. For good surveys of PRN's see [11 and 12].

7

1.1. Technical System Considerations:

Three technical constraints that apply to the design of any PRN are outlined. Since

these constraints are technology dependent ones, we emphasise their importance here, but

do not dwell on them at any length in subsequent sections.

(a) Propogatioa Lose: It has been found that the propogation loss of ground radios is highly

sensitive to the type of terrain the PRN is located in. This makes the estimation of link

connectivity very hard when undulations in the terrain are not easy to predict, and strength-

ens the case for finding automated network management procedures capable of sensing the

connectivity of the PRN in real-time.

(b) Multipath effectr. These are reflections of the original signal which lead to superpo-

sition at the receiver of several copies of the signal. This causes symbol interference and

fading, and consequently drives up the error rate. Movement by a mobile User of only a

few meters can cause the received signal strength to drop below the threshold, effectively

disabling the link. It then becomes possible for a link to be intermittently disabled and

enabled even if the user is moving about within a radius of only a few meters. These effects

are minimi ed by using spread-spectrum signalling, which is a combination of bandwidth

expansion and coding. It is assumed in this thesis that multipath effects are negligible.

(c) Capture Effects: A packet is said to be captured at the receiver when all successive

interfering packets at that receiver are rejected as noise. Unfortunately, it is possible that a

later arriving signal with a considerably greater strength might destroy a captured packet.

It is not clear how to model this situation exactly (eg. beyond what threshold is a captured

packet actually destroyed?), and so we make the worst case assumption that all colliding

packets at the receiver are destroyed.

For example. consider the situation in Fig. 1.1. Every radio has a fixed transmission

8

radius and all radios within this radius will hear it. Let A be transmitting to D. Clearly

B can hear the broadcast. Now suppose that C would like to transmit to B. Then some

packets from C are sure to collide with those from A, at the node B.

C

Fir. 1. 1
Capture Asumption: rA = transmission radius of A; rc = transmission radius of C.

We assume that all packets from C and A transmitted at overlapping time intervals

will be destroyed at node B.

It is worth observing here that in fixed topology PRN's, the transmission radii can

be fixed to an optimum so that the effects of collisions are mini-ized, and throughput is

maximized. However in a mobile environment, the network topology may be varying quite

rapidly, and so this approach will not work. We therefore assume the transmission radii to

be arbitrary and fied.

9

•7 .

1.2. Multiaccess Methods and the Hidden Terminal Problem

The throughput of a broadcast network depends critically on the method its users

employ to access the channel. It is clear that if all users were to broadcast at random the

large number of collisions would result in a poor level of thoughput. Many schemes have been

suggested for broadcast networks in general. Carrier sensing methods have been found to be

particularly attractive. By carrier sensing we refer to protocols in which the terminal listens

to the channel to check if another terminal is broadcasting, and only transmits a packet

when the channel is sensed to be idle. An important assumption made in the analysis of

these schemes is that the terminals are within mutual line of sight (los), and within range of

each other. Unfortunately, this does not apply to many PRN's. In fact it is possible for two

terminals to be within los but not within range of each other, or for them to be obstructed

by an object which blocks radio waves, such as a hill or a tall building. Such terminals

are said to be hidden from each other. It has been shown that hidden terminals seriously

degrade the throughput performances of traditional carrier sensing methods[6]. Intuitively

this effect can be explained by observing that when a terminal senses the channel, it has

no way to determine if a hidden terminal is broadcasting at the time.

Tobagi and Kleinrock [6] have suggested a Busy Tone solution to this problem

by proposing the location of a central station such that all terminals are within los and

mutual range of it. The station transmits a Busy tone on a specially set up busy-tone

channel to all terminals, as long as it senses a transmission on the multiaccess channel. The

terminals transmit only when they do not sense the busy tone. It has been shown that this

solution is able to compensate substantially, for hidden terminal effects. A fixed station is

also useful in cases when non-random access to the channel is desired such as polling, or

centralized reservations, which suggests that whenever such controllers may be constructed

economically, they should be. However, as noted earlier, many important applications of

PRN's are in necessarily stationiess environments, and it is not clear flow to resolve the

10

• • - -" -" -""- " - -•• - '- " '' . -" "' '",-.- "•...,...".".-..."--...."..'..-..-.•-.........-..-..-....''. '.

idden terminal problem in such situations.

1.3. Linked Cluster Architectures

The ideas in the previous section provide the motivation for this scheme, which was

first proposed by Baker and Ephremides [5]. It is reasonable to try to enhance the conflict

resolution capability of a stationless PRN by organizing it into clusters, each of which has a

node designated as the leader or head of that cluster. This node is bidirectionally connected

to every other node in the cluster, and acts as a local station or controller. I Each node

is in some cluster, and therefore is controlled by some cluster head. The hidden terminal

problem is solved within a cluster using Busy-Tone Multiple Access or some non-random

scheme such as polling.

Observe that in general it is neccessary to have more than one cluster in a network,

since the transmission radii of the radios are fixed, and it is possible that no radio is

connected to all the other nodes. This brings up the problem of inter-cluster communication,

which is handled by linking adjacent cluster leaders through other nodes called gateway

nodes. A gateway node is necessary if two adjacent cluster leaders are not within range

of each other. Thus the organization of the PRNi consists of possibly overlapping clusters,

whose leaders form a backbone network, and are linked by gateway nodes. It should be

understood that since the nodes are mobile, any node may become a cluster leader, or a

gateway node, and that the status of a node will in general, keep changing. An algorithm

which organizes the nodes of a PRN in this manner must not depend on the existence of a

particular node in a particular region, thus forcing it to be distributed in nature.

1If node i can hear node j then we say that j is accessible from i. From now on two

nodes are defined to be connected iff they are accessible from each other.

"11

! '--...................................

w|

1.4. The Case For ini=zLing The Number of Clusters

The major difference between the solutions proposed for the Hidden Terminal prob-

len in sections 1.2 and 1.3 is that there are many controllers in the stationless environment.

This leads to complications which arise from the existence of gateway nodes, and the pos-

sibility of one node being contained in several clusters.

M2 Lm+m

3 m+4

Lm L2m

(aC) (b)

(C)
Fir. 1.2.(a). (b) and (c)

These difficulties are explained with reference to the network represented by the

graph in Fig. 1.2(a). The nodes represent radios, and the links, bidirectional connections.

Notice that transmissions from nodes 1 ... m condict with each other, as do those from

nodes m + 1 ... 2m. Nodes m and m - 1 also form a couficting pair. Any Linked-Cluszer

organization of this network must have at least 2 clusters since no single node is connected to

all the other nodes. figures 1.2(b) and (c) represent 2 possible Lirnked-Cluster organizations

for this network.

12

First let's focus on Fig. 1.2(b). There are 2m - 2 clusters; the jiI cluster is led by

Li. Notice that the it cluster contains 2 nodes: L, and either G, or G2. The G nodes are

each physically contained in mn clusters and also serve as the gateway nodes of the network.

Now let us examine the question of which cluster leader(s) should control the gateway node,

GI. Suppose that only one of the cluster leaders, say LI, controls the transmissions of GI.

Then in a busy-tone solution, 0, would listen for the busy-tone of L, and would transmit

whenever the busy-channel is idle. But this could cause collisions in any of the other clusters

led by L2 ... L,.- 1 , unless different clusters use different frequency bands. The allocation

of these frequency bands to the various clusters is not a straightforward problem, and has

barely been solved for applications with fixed stations[17]. Since the number of clusters in a

stationless environment is constantly changing, an upper bound on the maximum of clusters

possible depends on, among other things, the number of nodes in the network. Since any 2

clusters may overlap, the number of bands the access channel is to be divided into, depends

in turn on the number of clusters. Hence for large networks the number of frequencies

required may become ridiculously large. At any rate,, there are a number of reasons why

the number of frequency bands the radio can operate at should be kept down to a bare

minimum, and so it is highly desirable to avoid the collisions in some other way. Notice

that similar collisions would occur even if a non-random access scheme such as polling, or

reservations were used within each cluster. Thus the organization of fig. 1.2 is not amenable

to any efficient solution to the hidden terminal problem. It is important to note that many

of these defects can be minimnized using spread spectrum, but this introduces the problem of

knowing which pseudo-noise keys to listen for, and arguments similar to those made above,

now come into play in resolving this problem.

On the other hand if 0, is controlled by all of the cluster leaders it is connected

to, then in a busy-tone solution it can only transmit when it does not sense traffic in any

of the clusters L, . .. Lm..-i. This is an unfair throttling of G1. i.e. the throughput at node

01 would be very low compared to that of the nodes L, ... L..

13

Another severe problem in the Linked-Cluster scheme of Fig. 1.2. is that the gate-

way nodes are common to many pairs of clusters. In fact, no inter-cluster communication

can occur without the message being routed through at least one of the gateway nodes.

This implies that numerous collisions can occur at G1 and G2 , since inter-cluster messages

are always sent in an uncoordinated manner.

Observe how nicely these defects are corrected in the organization of the nodes in

Fig. 1.2(c). Here there are only 2 clusters, and no gateway nodes. The only nodes which are

physically contained in more than one cluster are the leaders themselves. This organization

is superior to the one in Fig. 1.2(b) for 3 important reasons:

(a) Clusters are la ger in size (m versus 2). This decreases collisions since intra-cluster

collisions can be minimized using existing techniques.

(b) The protocols for inter-cluster communication are much simpler. This is because

the gateway nodes have been eliminated.

(c) The high number of collisions which occured at gateway nodes has been eliminated

since there are no gateway nodes.

This example illustrates the point that a Linked-Cluster Algorithm must try to

organize the nodes so that there are few clusters, and as few gateway nodes as possible. In

this thesis we will examine the important tradeoffs of minimizing the these quantities with

the communication and computational complexities of algorithms.

14

15Previous Work

5,. The only algorithm in the literature which organizes mobile radios into a Linked-

Cluster Architecture is due to Baker and Ephremides[5]. It was developed specifically for the

Navy's HF Intra Task Force (ITF), which is a general purpose PRN providing extended line

of sight communications in the sea. While this distributed algorithm is easy to implement,

it has a number of drawbacks which restrict its utility to a very small range of applications.

A major aim of this thesis is to suggest ways to overcome these rather serious shortcomings,

and so the algorithm (which we will call ITF for a lack of a better name), is now presented

and analyzed in some detail.

ITF assumes that the nodes are numbered from 1 to N, where N never changes. The

acess channel is controlled by Time Division Multiplexing the users. Time is divided into

epochs, and each epoch into 2 frames. A frame consists of N slots, and node i broadcasts

in the jit slot. The details of what exactly is broadcast in the slots of these frames are

not important and can be gotten from [5]. Suffice it to say that by the end of the second

frame each node has the following topological information: it knows the nodes to which it is

connected, and the nodes to which these nodes are connected. Based on this information a

node declares itself to be either a cluster leader, a gateway node, or just an ordinary node.

If it is a gateway it knows which clusters it links, and if it is a cluster leader, it knows all

its gateway nodes.

The actual algorithm used to form the clusters is a distributed version of the fol-

lowing simple centralized procedure: Declare N to be a cluster leader. Then if N - 1 is

bidirectionally connected to any node including itself that N is not connected to, then de-

Clare N -1I to be cluster leader. Similarly check if N - 2 is Connected to any node which

is not connected to N and N If1 1 so, declare N - 2 a leader. The procedure continues

like this until all nodes are connected to the set of declared cluster leaders. An example is

shown in Fig. 1.3.

4. 15

9 10

Leaders are selected in the order 11, 10, 7, 6, S.

Unfortunately, there are a number of diffculties with the algorithm, some of which

were recognized and discussed by the authors themselves. We list these previously recog-

nized problems below.

(i) Clusters may be contained within other clusters.

(ii) Several pairs of nodes may declare themselves to be gateway nodes between the

same pair of clusters.

(ii!) Asymmetric gateway links ane possible, in which one of the nodes in a gateway pair

is not aware that the other is.

In addition, there remain three major problems which have not been mentioned.

The first has to do with the fact that the number of users must be fixed. In any PRN

nodes are bound to fail, and other nodes may be needed to be added to the network. The

algorithm does not allow for such additions and deletions.

The second probiem is that of inefficiency ox: time. The channel is time division

16

multiplexed, so that only one user can broadcast at a time. However, it is sufficient to

"" ensure that only users less than three hops away do not broadcast at the same time, to

avoid collisions completely. When the network is large and sparsely connected it might be

beneficial to risk some collisions, and to then resolve them using a contention based scheme,

rather than to TDMA the channel.

The third, and most important problem, from the point of view of this thesis, is

that the algorithm does not take into account the fact that it is essential to try to restrict

the number of clusters and gateway nodes. In Fig. 1.4. the results of cluster organization

are presented using ITF. The reader may verify these results by applying the centralized

algorithm illustrated in Fig. 1.3. It is seen that ITF performs miserably sometimes, and

is then no better than the case in which every node in the network is a cluster leader, and

broadcasts messages at random!

From these remarks one may conclude that the Hidden terminal problem has not

been solved for mobile, stationless PRN's, and that much work needs to be done in devel-

oping distributed Linked-C) uster algorithms which try to minimize the number of clusters

and gateway nodes in the PRN.

1.6 The PPRN Model

We now present a model which is reasonable in view of the facts and arguments

presented in earlier sections. It is assumed that a PRN consists of N identical mobile radios,

distributed in a plane. Radios will be interchangeably referred to nodes and terminals. Each

radio has an integer identity number and consists of a receiver, with an omnidirectional

antenna, and a transmitter with a fixed transmission radius. All the radios need not have

the same radius of transmission. Messages are sent singly by a terminal in framed packets

of equal length. The packets contain header information such as the origin and destination,

neccessary for multihop routing. If several packets are received at a node simultaneously,

17

-7

ITF OPTI MUM

6

5 6

3 5

(b)

3 7 3 7

5c 5

(d) 0 0
12 4 5 12 45

[i r i , . 4

F2

[- .~~ *~'* *~ -N\ A /

all of them are assumed to be destroyed, and must be retransmitted. Lower level protocols

such as acknowledgement schemes (ARQ's) which intimate the sender of a lost packet are

* not assumed to be present. Finally, the PRN is always connected; there is a path between

all origin-destination pairs at all times.

1.7. Outline of the Thesis

There are two main parts to this thesis.. The first deals with the tradeoff of min-

imiuing the number of clusters and gateway nodes, with the computatioal complexity of

the problem. The problem is formulated in graph-theoretic terms, and analyzed from a

centralized standpoint (i.e. global information about the topology is assumed.) The re-

sulting optimization problems are found to be NP-complete, forcing us to look for efficient

(polynomial time) heuristics. Considerable attention is given to measuring the worst case

performances of such heuristics, and it is shown that it is extremely unlikely that an efficient

algorithm exists which guarentees a solution that comes to even a constant of the optimum.

Then some heuristics are presented and analyzed which are computationally efficient, and

which do a "reasonable" job in approximating the optimum answer.

The second part (Chapter 3) consists of distributed versions of the centralized

heuristics analyzed in Chapter 2. At this point special emphasis is placed on the com-

munication complexity of the algorithms, and on actual implementation in PRN's.

Finally, Chapter 4 is a brief conclusion, and contains suggestions for further work.

CHAPTER II

COMPUTATIONAL COMPLEXITY OF THE CENTRALIZED PROBLEM

Any Linked-Cluster algorithm must be able to organize the terminals of a PRN

efficiently, since the nodes are mobile and the topology of the network may be changing quite

rapidly. It has already been argued that the number of clusters and gateway nodes should

be minimized. However, the computational implications of such an approach have not been

discussed. In this chapter we will address such issues as to the degree to which it is possible

to minimize these quantities without lapsing into the realm of inefficient (exponential time)

algorithms.

Ini the centralized problem, all the nodes are omniscient and thus have complete

information about the topology of the network. Also, computations are performed sequen-

tially, not in parallel. It is easy to see that if the best algorithm which solves the centralized

problem runs in time T, then no distributed algorithm can salve the problem in less than

time ,where N is the number of nodes in the network. A direct implication of this is that

if no polynomial time centralized algorithm exists, there can be no distributed algorithm

which runs in polynomial time either. Hence it is profitable to first study the problem from

a centralized standpoint, since negative results apply to the distributed case as well.

20

2.1. Formulating the Problem

Recall that a cluster leader must be bidirectionally connected to all of the nodes

in its duster. Hence, we will be concerned only with such bidirectional adjacencies in the

network. Given a network topology at some time instant, define a graph G(V, E) as follows:

V = the set of users {1,2...N}

E = {(i,j) : i can hear j and j can hear i}.

Observe that a complete set of cluster leaders is a set of nodes such that every node not in

the set is adjacent to at least one node in the set. This is known as a Dominating Set in

Graph Theory, and is formally defined as follows:

Definition 2.1. A Dominating Set, D, of a graph G(V,E) is a set of nodes such that

Vj E (V - D)3i E D s.t. (,,j) r E.

If the number of clusters is to be minimized without bothering about the number of

gateway nodes, one could look for the minimum cardinality dominating set. If no gateway

nodes are desired, then the dominating set should be one of minimum cardinality, such that

the graph it induces is connected. A compromise between these two approaches is to find a

dominating set of minimum cardinality such that for every pair of nodes in the set there is

path which connects them, such that 2 gateway nodes are never in successive order in the

path. These three formulations of the problem are now given formally:

Definition 2.2. The Minimum Dominating Set problem (DSP) is the one of finding a

minimum cardinality Dominating Set, D*, for a graph G.

Definition 2.3. The Connected Dominating Set problem (CDSP) is the one of finding a

minimum cardinality Dominating Set, D', for a graph G, such that the graph induced by

D is connected.

Definition 2.4. The Semi-Connected Dominating Set problem (SCDSP) is the one of

finding a minimum cardinalty Dominating Set, Do, for a graph, G, such that there is a

." 21

".j
"............ ..

spanning tree of G, whose edges each have the property that at least one endpoinc is in Do.

Fig 2.1 illustrates the different formulations.

(a) . ". -- -_ (b) 0 . . - -

DSP CDSP

[: (c) o . C . .- o

SCDSP

DSP CDSP SCDSP
No. gateways 2 0 1
No. clusters 2 4 3

2.2. Some Definitions

In the following sections we will prove a number of results by polynomial many-one

reductions of problems widely believed to be intractable to the problems defined above.

These intractable problems are defined here:

Definition 2.5. The Vertex Covering Problem (VC) is the one of finding the minumum

cardinaLity subset of nodes, C, for a graph, G(V,E) s.t. V(ij) 6 E, (i E C orj E C).

Definition 2.6. The Set Covering Problem (SC) is defined on a ground set, r, a collection,

5, of subsets of r, and is the one of finding a minimum cardinality subset P, of S such that

"..r

22E

.

Definition 2.7. The Directed Dominating Set Problem (DDSP) is the one of finding a

minzimum cardinality diminating set in a directed graph G(VA).

Definition 2.8. The Maximum Leaf Spanning Tree Problem (MLSP), is the one of finding

a spanning tree of a graph G (V, E), which contains a minimum number of non-leaf nodes.

We will also need the concepts of closed and open neighborhoods of a node:

N(i) i r= V: the set of nodes adjacent to i.

N(S) = UisENWs.

2.3 NP-Completeness Results

Readers unfamiliar with proofs of NP-Completeness are refered to [13] for a standard

treatment of the subject. A cx B means that any instance of problem A can be converted

to an "equivalent" instance of B in time polynomial in the size of the instance of problem

A.

Lemma 2.1. DSP, CDSP, and SCDSP are NP-complete.

Proof. We prove the lemma in 3 parts:

(a) DSP: We show VC cc DSP. Given G(V, E) define G'(V', E') such that

V = V U {., . (ij) E E) and E' = E u {(i,), (vii : -, j) E E} (see fig. 2.2.)

Suppose that P is a vertex cover in G. Then P is a dominating set in G' (assuming that

G has no isolated vertices) since P must be a dominating set in G, and must also cover all

nodes of the form %1 in G'.

If D is a dominating set in G', then so is the set

D'= (v :v E (V r-, D)} u (i vi, E DI. Now observe that since D' covers all nodes of

the form vij in G', it must also cover all edges (i,j) in G, thus implying that it is a vertex

cover of G.

23

We can then conclude that G has a VC of size k - G' has a DS of size k. Done.

Figure 2.2. illustrates the -b,,-ti,-

1 4

V23 V35

(b) SCDSP: VC c SCDSP. This follows immediately from the reduction in (a). Observe

that the dominating set in G' must be sem.i-connected, else at least one of the vjj's would

not be covered.

(c) CDSP: DSP = CDSP. Given G(V,E) define - graphs G1 (VI,E') and G2 (V2 ,E2)

such that: G' has IVI nodes, {cl ... ,vl}, and forms a complete graph; and G' has nodes

{ d,... ,divi}, and no edges. Then define the graph G(V',E*) such that V" = V' t

V2,E" = El j E 2 U ((ci,di) : c E V',di E V, (=) or (i,j) E E}.

See fig. 2.3. for an illustrative example.

Suppose G has a DS of size D. Then the set {c. : i E D} is a connected DS in G*.

On the other hand, suppose G" has a DS, D" = C D ,.t.C E Vi, D e V. Then surely

1) = 6" {c, : d, E D} is also a CDS, since N(d,) C N(c,) Vi. Then it is clear that 1) is a

DS in G. Done.

All the above reductions can be carried out in time bounded by O(IVI -.- El), i.e

they are polynomial time reductions. To see that the problems are in NP observe that

24

--. 2.

..

G G G2

positive istacs of the recognition problems can be verified in polynomial time.
Q..D

We note here that while the proofs are original, the fact that both DSP and CDSP

are NP-complete is not new [13]. The constructions used in our proofs though are useful

later on in the paper.

25

o.1

..

2.4. Measures of Performance of Heuristics

Since the problem of finding optimal dominating sets is NP-complete we can safely

assume that there is no algorithm that solves it in polynomial time. It clear that we are

forced to trade optimality with time, but exactly in what proportion is less obvious. Several

methods of dealing with NP-complete problems are to be found in the Literature, some more

appropriate than others to our problem.

Some algorithms run in polynomial time for most cases, but are inefficient in solving

a small number of 'atypical7 instances. The Simplex algorithm for Linear Programming

is such an algorithm. 2 The main reason why such an approach is not appropriate for

our problem is that there is a possibility of the algorithm taking an inordinate amount of

time in some cases. In a mobile environment, one of most essential attributes of a network

organizinw algorithm is speed.

Heuristics have also been analyzed with respect to their average case performance.

This becomes possible when there is reason to believe that the instances encountered in

practice obey some probability distribution. In this case good algorithms are those which

run in polynomial time and are guaranteed to give optimal, or near optimal solutions for

"almost' all problem instances.

The notion of "almost all" has been quantified as follows: Let SN be a given

probability distribution for all instances of size N. Let X(I) be a boolean variable for

some condition applicable to each of the problem instances. For example, X(I) can be the

condition that a given algorithm solves the problem instance I, optimally. Let qjv be the

probability that X(I) does not hold for a randomly selected problem instance of size N.

Then X(I) holds almost everywhere if EN qN < oo.

2 It is true that LP is not NP-complete. However, the behaviour of the Simplex

algorithm is consistent with the one we are describing.

26

-7i

Now let's examine the suitability of such an approach to our problem. Many re-

searchers have made probabilistic assumptions on the topology of mobile P RN's. For exam-

pie Nelson ha.s modeled a snapshot of the network as a Poisson point process with a mean

density of A terrninals[3]. The radios have identical transmitting radii. Gallager [16] has

suggested choosing bidirectional links between terminals with a probability dependent on

their distance from each other. Hence, one might try an average case analysis of algorithms

based on a reasonable probability distribution for the topology of the network. However,

there are 2 problems which remain:

(1) The probabilistic analysis of algorithms is usually extremely cumbersome and in-

volved for the simplest of algorithms, as a consequence of which results have not

been forthcoming in this field[13]. There is no reason to suppose that this will not

hold for our problem as well.

(2) Suppose that an algorithm is found to be optimal almost everywhere. This does not

mean that its performance is guaranteed to be within any reasonable limits for an

infinity of "atypical" instances. Suppose the PRN reaches such a configuration, and

the radios do not move significant distances for a while i.e. the atypical configuration

holds for a long time. Then very poor organization of the network would persist

for this period, resulting in numerous collisions, and considerable inconvenience to

the users.

In this thesis efficient heuristics will be analyzed from a more conservative stand-

point. The performance is based on the worst-case situation, thus bounds on the running

time and error are guaranteed. The error may be measured as a constant difference be-

tween the achieved and optimal solutions (differential error), or as a constant fraction of

the optimal solution (fractional error). The next Theorem shows that no efficient heuristic

can guarantee a constant differential error for our problem.

Theorem 2.1(a). Let A be an efficient heuristic for DSP, do be the cardinality of an

27

solution returned by A on the graph G, and KG be the cardinality of an optimal solution

of DSP for G. Then unless P = NP, there is no integer M such that

dG - Ko < M, VG.

Proof: Suppose there is an efficient heuristic B, for which the theorem does not

hold. Then there must be an integer, M', for which the inequality holds. Now consider the

graph, H, which is made up M' + 1 copies of some arbitrary graph, G, and apply B to H.

By assumption:

dm -KH5 <M' (2.1)

But KH = (M' + 1)KG. Since the copies of G are disconnected in H, all the nodes in any

particular copy, are dominated exclusively by nodes in the same copy. Hence the nodes

selected by 8 in any copy form a dominating set ofG.

Now let the cardinality of the smallest complete set of nodes selected in any copy be -Y. It

is clear that -Y 5 " Substituting expressions for dH and KH in 2.1. we have

-y(M'+ 1)- (M'+ 1)KG 5

-which implies that

-y KG :5 A < 1.M'+I

Since the difference on the LHS must be an nonegative integer, we have:

- - KG = 0,

which means that B picks the optimal DS for any C, and that P=NP. Done

Theorem 2.1(b). Theorem 2.1(a) holds for CDSP and SCDSP.

Proof: Similar arguments as in part (a).

This negative result leads us to examine the case when error is defined to be a

constant fraction of the optimum. Efficient algorithms with such error bounds are called

-Polynomial Time Approximate Algorithms, and are defined in the next section.

28

. .

2.5. c -Polynomial Time Approximate Algorithms

Definition 2.9. Let A be an optim:ization problem wvith positive integral cost function c,

* and lot A be an algorithm 'which, given an instance I of A, returns a feasible solution IA (1);

denote the optimal solution of I by 1(1). Then A is called an e-approsximate algorithm for

A for some c 2: 0 iff

Ic(fA(I) - c(f(I))

for all instances I1113].

The next result, another negative one shows that it is extremely unlikely that an c

-PTAA exists for DSP, or for DDSP.

Theorem 2.2. There exists an e-PTAA for DSP 4- there exists an e-PTAA for

SC - there exists an e PTAA for DDSP.

Proof- (a) PTAA DSP 4=; PTAA SC:

()():Consider an instance of DSP, G (V, E), and suppose there is an c-approximate

algorithm to solve SC. Define the following instance of SC:

r=v, s={N(i)uis.t.iG~v}

It is clear that the SC instance has the same solution as the DSP instance. So by using the

approximate algorithm on the SC problem, we can get an c-approximate solution for the

DSP instance.

(ii) ():Consider an instance of SC, (r, S), and suppose there is an c-approximate algo-

rithm, to solve DSP. First define the two graphs GI and G2 where

G' is aclique consisting of nodes V1 (c,....csl), G'consists of nodes V' - ql,..., qjr1 1,3

and no edges.

Next let G(VE) be such that V -V U V 2 , E = VU 2 {(c 1, qi) ci E V1, q, G

V', .j E S1} (See figure 2.4.)

If P is a solution to the SC problem, then {c1 S. E P) is a DS in G. Also, if

29

r (r,2$).

S1 :12 .
S2 {2?,3,4} Zq

S3 a :{ 1} 1

P = {Sj',S2 C3 q
IPI :2 211

D C Qt',C C cVI, Q C V 2, then so is 1) = C U{4 : d, r D}. But flis clearly a set

cover for (r, s).

We see, that the instance of DSP has the same solution as that of SC, and so using

the approximate algorithm on the DSP instance, we get an E-approximate solution for the

SC instance. Done.

(b) PTA.A DSP PTAA DDSP:

(i) (PTAA for DDSP =s PTAA for DSP)

Suppose there is an e -PTA.A for DDSP. Then given an instance of DSP, G, do the following

to the graph:

Replace every edge (ij), with 2 directed edges (ij) and (j). Now apply the PTTA for

DDSP, to the modifed graph. It is clear that the original graph G, and its modified

directed version share exactly the same set of dominating sets, and so the result follows:

(ii) (PTAA for SC =* PTAA for DDSP):

Suppose there is an e-PTAA for SC. Then given an instance of DDSP, G(V, A) define:

r = v, andS = V! 5 s-.LSi {j: (i,j) E A} U {j}

30

,........, ,.. ., .. ,. ., ... , ,....,"..... . ,o.... %-.,..........
• ~ e . .- ,. . ." o .•.- ..

p .-. m f - , - . " l2• ._ - .• -- - - . . • • ---

It is clear that the SC instance has the same solution as the DSP instance, so by using

the approximate algorithm on the SC problem, we can set an e-approximate solution for

the DDSP instance.

Hence, PTAA SC =* PTAA DDSP zo PTAA DSP = PTAA SC. Done.

Q.E.D.

Theorem 2.2 is a rather negative result since the Set Covering Problem has been

studied extensively [101, [11], [12] and no e-approximate algorithm has been found. In the

next lemma, it is shown that CDSP is at least as hard as DSP to find a e-PTAA for, and

so we have reasons to be pessimistic for CDSP as well. Interestingly, MLSP is also at least

as hard as DSP.

Theorem 2.3. There exists an e-approximate algorithm for CDSP -c there exists an

e-approximate algorithm for MLSP =: there exists an c-approximate algorithm for DSP.

Proof: (a) PTAA CDSP , PTAA MLSP

The stronger statement that the 2 problems are equivalent is proved, i.e. CDSP .4

MLSP

Let D' be a solution to CDSP for a graph G. It is claimed that D' is also a set of non-leaf

nodes for a maximum leaf spanning tree of G. Suppose not. Then there is a spanning tree

with more leaf nodes. Let the set of non-leaf nodes for this tree be L. Observe that L must

form a dominating set in G since each leaf node is connected to at least one non-leaf node.

Also, the graph induced by L is connected since the spanning tree is connected. Then, L is

a CDS. But L has a smaller cardinality than D4 by assumption, implying that De is not a

solution of CDSP. The contradiction proves the claim.

Now suppose that T is a solution to MLSP, and let L be the set of non-leaf nodes

for the solution. We claim that L is also a minimum cardinality CDS. From previous

arguments we know that L is a CDS. Suppose it is not of minimum cardinality. Then let

31

De be a CDS with smaller cardinality. We construct a spanning tree as follows: The nodes

D' are connected by any appropriate ID61 - 1 edges, which exist since Dc is a CDS. Now

by definition of DS each node not in the DS can be assigned to a single adjacent member of

the set. i.e. we can make the nodes not in the DS leaf nodes of the spanning tree. Observe

that none of the nodes in Dr can be leaf nodes, since the set is of minimum cardinality.

Then by assumption, the constructed spanning tree has a set of non-leaf nodes of smaller

cardinality than ILl. The contradiction proves the claim.

Figure 2.5 illustrates these arguments.

P

(b) PTAA CDSP = PTAA DSP.

This follows from the contruction in illustrated in Fig. 2.3. Given an instance of DSP,

G, use the construction to convert it to the equivalent instance of CDSP. Then apply the

PTAA for CDSP to the modified graph.

In view of these 2 results, we do not consider it worth pursuing e-approximate

algorithms. In the next section we look at algorithms for DSP which are such that the

error grows very slowly with the number of nodes in the graph. Unless there is rather large

variation in the number of radios in the PRN, such algorithms would minimize the number

32

..........................

of clusters quite efficiently.

2.6. Approxinate Algorithms for DSP- The Greedy Heuristic

It has been strongly argued in the last few sections that Heuristics for DSP with

constant or constant fractional errors do not exist. These negative results suggest that it

might be worthwhile to adopt an average-case analysis approach. However, this would not

be neccessary if we could show that there are algorithms which have amall fractional errors

which grow very slowly with the number of nodes in the network. Such algorithms are in

some sense, "almost as good" as -PTAA's. Fortunately, this is the case for a number of

heuristics, some of which are presented here.

We begin by analyzing a very simple greedy heuristic. Later on it is shown that

some other, more refined algorithms do not do any better, from a worst-case standpoint.

This heuristic operates seqentially, putting into the dominating set the least numbered

node which covers the maximum number of uncovered nodes in the graph at each iteration.

Formally we have:

Heuristic Greedy(G(V, E))

Step 0: UNCOV = V, COV= 4, i = 1, DS=4, C() = (i)i EV.

Step 1: d, = minargmaxjIC(j)l, DS = DS ud1 , UNCOV = UNCOV - C(4)

COy = COV u C(d).

Step 2: For i = 1 to IVI,

C(i) = {j : j E UNCOVand (i,j) E E, orj = i}

Step 3: i := i + 1,If COV 0 V then goto Step 1.

Step 4: Stop.

Let m be the number of uncovered nodes covered by d, when it is picked by Greedy.

And let IVI = N, K. = cardinality of a minimum DS of G. Since Greedy tries to cover

33

S

as many uncovered nodes as it can it every iteration, one might wonder what percentage of

the nodes it must cover by the time it has picked the optimum number of nodes. In some

cases this is 100, but since the algorithm is not optimal, there will be instances for which

the first K. do not do quite as well. The next result provides a bound for this percentage:

Theorem 2.4. For all graphs G we must have:

K. N
riN--.

Proof: Let Ak bt the solution to the following optimization problem, Pk:

zk z=max F~i ij (2.2)
ijEV

PSA:. s.t.

Zzi,=1 Vi E V. (2.3)

"" E Y-j- k. (2.4)jeV

0' o5 <i :- <j :5 1< Vi, 6 v. (2.5).3EV

z e, yj E INTEGER. (2.6)

DefineCi 1, 1 (j)EE i

This is a formulation of the k-Median Problem with an assignment of edge costs such that

it can be applied to the solution of DSP. Pk returns the set of k nodes which covers the

most number of nodes in the graph.

Let u = , ... u,,L} be multipliers for the constraints of the problem Pk. Define:

L(z, y, u) = jx j - Zu4 zj, - i) (2.7)
Siev sev 3EV

34

.

:J

= E{(Cii - Uij, + Z i
3EV tEv iEV

So the Lagrangian problem is

ZD(u) = max L(z, y, u)

subject to (2.4), (2.5), (2.6).

Let ZD = min. zD (u) be the Lagrangian Dual. Then we have converted this problem to the

form dealt with in [8].

We can now use the following useful result from [8].

('D - ZI)/(ZD - ZA) < 1/C, VPk (2.8)

where zR is the minimum objective value of P, i.e. zR = 0. z. is the number of nodes

covered in the graph in k iterations of Greedy.

Observe that zK. = N, and zM < N, Vk < K., and that zh, = N, Vk > K.. We

know that ZD :_ zh. Also, the coefficient matrix of Pk over constraints (2.4) and (2.5) is

easily seen to be totally unimodular. This means from Theorem 2 of [9] that ZD is identical

to the optimum value of the strong LP relaxation.

From this fact, and from (2.8) we conclude that:
K. K. K.

(ZK:- M (zK.- ZR)= (N- ti)/(N) o (Z mi/N) > (1 - 1/e)
i-iimi imi

and the result follows.

The next Lemma helps to prove one of the important Theorems of this chapter.

This theorem gives us the largest possible worst-case fractional error for Greedy:

Lemma 2.2. if Greedy returns a DS = {d, ... dd.} then: (a) - m = N; (b) MI >

m2 >...md._1;(c),ELI M +Komp+l>_N p= 0,1...d" - 1

Proof: (a) and (b) follow directly from the definition of Greedy. At iteration p -r 1

there are exactly N - m. uncovered nodes. Let this set be Sp.,. Now by definition

35

.................................. ~ . ..

of Greedy it follows that dp+ 1 covers the maximum number of nodes in Sp+1 , of all nodes

in G. Now consider any optimal DS, DS*. The average number of nodes in Sp+i which are

covered by nodes in DS* is

NS1 - mi___

K. K.

But this average is by definition, at most equal to the number of nodes covered by dp+l,

which is mp+l. Then we have:
N-Ep

= < M+1 p = 0,1,...,d - 1.

K,

The result follows directly.

Theorem 2.5. If Greedy returns a DS of cardinality d" for a graph G(V, E), with optimum

K. _ 2:
d*1 N N

-< 1 -log x, (-)< 1+ln -
Ko K TK

and this bound is attained by some graph for all values of K. > 2.

Proof: The results of the previous lemma are used to find a bound on d*. Let T.

be the minimum number of nodes which could ever be covered after z < d" iterations of

Greedy on a graph G. T, is obtained by solving the following LP:

X
Tx = min "N

s.t.

S2 > 3 2 > M...m > 1, (2.9)

mi + Komp+i > N p = 0,1,...z-I. (2.10)
= 1

We know that for the optimal basic feasible solution for T. exactly z constraints must be

satisfied with equality. Now observe that first constraint of the type (2.10) lowerbounds m1

by N. In general the ith constraint of (2.10) lowerbounds mi in terms of N, K. and the

values chosen for .. ,..., mr. On the other hand, the constraints of type (2.9) upperbound

the m1 's. Hence in the optimal basic feasible solution, in which the sum of the mri's is to

36

.7

-,.-

be minimized, as many constraints as possible of the type (2.10) will be satisfied without

violating any of type (2.9.) After some algebra we have-

m =max{ + I "- I} i1,... ,z. (2.11)

For z = d, simplification yields that mi = 1, Vi >_ i.mi where

i"-= 1 (2.12)

Now by surming the geometric series we get,
N -1- K.

But we want to find d: T= N. So, we have:
N

d K < . + log . (2.13)

Dividing through by K., the bound follows.

We still have to show that this bound is achieved for all K. 2_ 2. This is done

by explicitly showing the graph for K, = 2, and then giving a procedure to generalize the

construction for arbitrary values. For later reference, we refer to this class of graphs as

B,n(V, E) where k = K. and IVI = N -k
" .

= JI

j4 '5

F j 2.6 B:.3

Greedy picks ... ,... ,js} in this example while the optimum is 2. Note from (2.12)

that i,im, = 4, and that the conditions of equation 2.11 are met with equality. From this it

follows that the bound of Theorem 2.5, which is 2.5 in this case must be attained for the

fractional error, as in fact it is. The construction of B 2 ,n is now described: Since there are

2n+I nodes and K. = 2, let

N(2 -) = {1,2,...,2- - I}, N(2'+') = {2',...,2n+
1 - 2}.

The adjacencies of the j"'s are defined so that Greedy picks them in the order of their indices

i.e. JI is picked first, then j2 etc. Thus the number of uncovered nodes covered by ji is simply

mt,. Pick ji = l and N(1) = {2" + -1,2,... ,2n-1 - 1,2" .. .2"+2" - - 1}. It is clear that

N(ji)I = 2", and the first constraint of type (2.10) is met with equality j, were to be picked

first by Greedy. Now observe that the least numbered uncovered element of N(2n+I) is

32n-1 . Letj 2 = 32n'- 1 and N(' 2) = {2" - .. .2"-+2 - 2 -1,j2+1,. .. ,J2+2 n-2-2,2n+I}

It is easily seen that

IN(j 2)I = 2n - 1 = IN(2" + ') - N('i)j = IN(2" + ' -n) - N(ji) I.

Thus we see that j2 is as attractive a candidate in the second iteration to Greedy as are the

nodes in the optimal set, after ji has been picked in the first iteration. It is possible to give

the exact expressions for the remaining ji's but it is hoped that the construction is clear

enough already. The following conditions must hold:

19(i)fln Mi)I= [N~ 1 I-Vc = [j"'I , m i.., ~=N -1, N

where d is defined in (2.13), and [zi is the real number z rounded up. Finally, we must

generalize our construction to arbitrary values of k. There are N = kn+l nodes, and the

optimal set is {N - k + 1,... N}. Each of these nodes has a closed neighborhood of size

k", and thus the neighborhoods are disjoint. Now pick ji to be a node in N(N-k+I), and

define edges so that it covers exactly k" - I nodes from the neighborhoods of every node in

the optimal set. Thus IN(j 1) = k". The reader should already begin to see the emerging

38

...........*

pattern since the idea is identical to that in the construction of B 2,,,. Pick j2 to be a

node in N(N - k + 1) - N("1), and define edges so that it covers exactly k" - 2 nodes in

the neighborhoods of every node in the optimal set, such that these nodes (in N(j3)), are

not in N(ji). The procedure continues analogously for the remaining j,'s. The following

conditions must hold:

Done.

This result is important for 2 reasons. First it extends work on an equivalent form

of Greedy which has been analyzed for the Set Covering problem by Johnson, Chvatal, and

Hoschbaum [10], [11], [121. In [11] a best bound on the error is given by 6 where 6 is

the maximum number of elements in any member of S. Since DSP is a special case of SC,

this bound holds for Greedy(G(VE)), but the bound in Theorem 2.5 is tighter. Note that

this does not violate Theorem 2.2 since the equivalence holds only for algorithms which

have constant fractional error.

Secondly, the result tells us that while it is probably not possible to come within a

constant of the optimum solution, there are simple algorithms for which the fractional error

grows very slowly with an increase in N or K.. This relationship is plotted in figures 2.7(a)

and (b).

Theorem 2.5 gives a bound on the fractional error, but does not provide insight into

the actual number of nodes picked by Greedy in terms of the size of the graph. We will now

show that a famous bound due to Vizing[15], for K. also holds for d':

Theorem 2.6. s For a graph, G, with N nodes and M edges:

d< N+1- vi +1. (3.1)

The proof of this theorem has been suggested by Prof Ga/lager.

39

5

3

0 S00 1000

aFigure 2-7(a): a N (K. 0"

3

o0 500 1000

Figure 2-7(b): dvs. K. (N = 1000)

ID0

Proof: First convert G into a directed graph by replacing every edge (ij) by 2

directed edges (ij) and (j), and by adding self-loops (i,i) at every node i. Interpret a

directed edge (ij) to mean that the free node j would be taken if i were declared cluster

head. We can interpret Greedy on such a graph as follows: Declare the node with the

greatest outdegree a cluster head; delete all edges coming into the neighborhood of that

node; and if there are any edges left, declare a new cluster head, else stop. To see that

this is identical to Greedy, interpret a directed edge (ij) to mean that if i were picked to

be leader, the previously uncovered node, j, would be covered by i. Suppose Greedy picks

node d, in the i" iteration. Let S(i) be the set of previously free nodes which were taken

by di, and let IS(i)i = mi. Finally, define E to be the number of edges left at the end of

the i"k iteration coming from free nodes i.e. Ej does not include edges from TAKEN nodes.

Set Eo =2M+N.

Consider some j r S(i). IS(')I :_ mi just before the s-" iteration. Since all edges

come into FREE nodes, and j is also FREE before the i"' iteration, for each edge coming

into j, from a FREE node, there is also an edge going out of j to that FREE node. Thus

there can be at most mi edges coming into j from FREE nodes, and the total number of

edges running from previously TAKEN nodes to members in S(i) is at most m;. There

may also be edges from previously TAKEN nodes to members of S(i), but we need not

consider them, since we are counting only edges from FREE nodes.

Now observe that we still have to consider the edges coming from S(i) into FREE

nodes which are not in S(i). These edges are not deleted by Greedy, but they are not

counted in the definition of Ei. It is clear that the outdegree of every node in S(i) must

be :< mi+,, since the self loops of all such nodes has been deleted in the it'- step. Thus

the number of outgoing edges from S(i), after iteration i is < mj(mi - 1). This bound can

tightened if we know that d. E S(i). Then sincp - , know that d- has zero outdegree, and

zero indegree after the Oh iteration, we have the bound (mi - 1)rni+i.

41

By definition of E, we conclude that:

Ei> E,_, - - mi(mi -1

El _ E. - mn - (MIn - I),n.

Ed. =0 by definition of d'. Thus,

0 = Ed. M M + (MI - 1)m 2 + 1 iM) "4 ° 4 -- 1) +E1

i=2

Solving for Eo
4" d"-1

Eo < E mr + (Mi - 1)M 2 + M(- 1). (2.14)
= 1 "i=2

Now recall from lemma 2.2. that m i = N and mi > mi - 1 > 1. Eo can be upperbounded

by maximizing the RHS of (2.14) with respect to the mi's subject to the constraints just

mentioned. We claim that this maximum occurs when

m=N-d+1, m2=tms= ... md=1.

This is easily seen to be true by contradiction. Suppose the maximum is achieved so that

the highest order mi which is greater than 1 is not m, say mi,j > i. Now reduce m3 to

1 and add mj + 1 to m. (We can do this because none of the constranints are violated.)

Then the difference in the RHS is:

8 = Mj (2m, + m3 - mj- i) - + in2)

Mi(M + M2 + MIn- -) (Mi + in2)

Now observe that m, > mj. > 2.

=D8 2(MI + m2-1i (Mi +m2)

= m, + m2 - 2 > 0,

which contradicts the assumption.

Substituting the maximum values in the RHS of (2.14) we have:

Eo= 2M + N < (N - d + 1)2 + d - 1 + (N - d'),

42

*-**.,* . . .% .. . -. ,. .'.*. " .. , *,..- *, .*, .. ., ,- .- . .- .- 1

Q.E.D.

The reader might question here the use of analyzing this centralized, sequential

algorithm in such detail, when what is desired is a distributed procedure with a high degree

of parallelism. In response we note that a distributed version of Greedy is presented in

Chapter 3, and claims on its ability to minimize the number of clusters will be based on

the analysis just completed.

2.7. Other Approximate Algorithms

In this section it is shown that other reasonable, but more complicated heuristics

fail to do better than Greedy in the worst case.

From the construction of BA,,., one may be tempted to suggest a greedy algorithm

which runs Greedy N times, each time with a different value of d1 . The output DS would

be the minimum cardinality set over all repetitions of Greedy. Call this algorithm Allgreedy

and let the cardinality of its output be D*. Allgreedy performs at least as well as Greedy,

and also solves B1, exactly. However, consider the graph Bn, which consists of m copies

of B1,,.. (Fig. 2.8)

0 It is easy to see that Allgreedy will find the optimum in only one copy of Bk, and

will perform in the worst case, as poorly as Greedy in the remaining m - I copies. For large

m Allgreedy will do neglibly better than Greedy, in fact the fractional error of Allgreedy

must approach that of Greedy from above, as m increases. Thus even for simple examples

Allgreedy is net very effective.

Finally, we examine an algorithm which is not greedy, i.e. nodes selected in one

step might be dropped in subsequent ones. The idea behind this algorithm is to maintain

43

....................

k, n k, n

Fix. 2.8

N candidate solutions, such that the s' one includes node i. At each iteration the ith

candidate solution is obtained by choosing i, and the candidate solution from the previous

iteration which along with i covers the maximum number of nodes in G. The algorithm is

presented below:

Heuristic Comm(G(VE))

Step 0: Si~i) = 11 (i), Vi, k =1, Di = i}.

Step 1: k = k + 1 ji re arg zaxEv{INf(i) U Sk-1Ux~)J} Di= {i} U Di, Vi.

Step 2: k(i) = R(i) U S,. . ..(j1) Vi.

Step 3: If max s k(i) = IVt then STOP, and return the corresponding set D; else go to

Step 1.

Initally, the i" candidate solution is just i. In the second iteration (fo =2), i

corresponds to the node which covers the most number of uncovered nodes if the only node

picked thus far were i. Thus Di = (i,j,}J in the second iteration. S2(i) is nothing but the

set of nodes covered by Di i.e. N(i) U N(j*l. At iteration k, the algorithm has N candidate

solutions, DI. . . D, each of ca-dinality at most k. The S.s represent the nodes covered

44

;* . .ep.*.' 1.2**

%%

by these candidate solutions. The algorithm terminates when one of the solutions covers

all the nodes in the graph. The S1+i's are obtained as follows:

The Oh solution set is node i combined with the solution set obtained in the k"' iteration,

such that the combined set covers the most number of nodes.

Observe that both Bt,. and &,, are solved exactly by Comm, for all k, n, and m.

The reader is encouraged to verify this claim. While we cannot show worst case error, we

exhibit the following class of graphs R,,, for which the error is potentially arbitrarily large.

Rn (V,,,E.): Let IV,,I = 2- and label the nodes 1.. .2. Let i base 2 be the n digit binary

representation of i :_ 2": Now define the adjacencies as follows:

N(1) = { i:i base 2 has a 1 in the first positon }

N(2) = { i: i base 2 has a 1 in the second position }

etc. until

N(n-2) - { i: i base 2 has a 1 in the n - 2"d position }

N(n-1) { i: i base 2 has 01 in the last 2 positions }

N(n) - { i: i base 2 has 10 in the last 2 postions }

N(n+l) = { i: i base 2 has 00 in the last 2 positions }

N(n+2) = { i: i base 2 has 11 in the last 2 positions }

Observe that the optimal DS = {n - 1, n, n + 1, n + 21. However, Comm picks the set

{1, 2,..., n + 2). To see why this happens, first observe that we need to focus attention

only on the nodes 1,..., n+2 since these nodes have much larger neighborhoods than any of

the other nodes for moderate values of n. In particular, nodes 1,. . . , n - 2 have degree 2' -

and nodes n - 1,...,n+ 2 have degree 2" - . It is convenient to call A =.{1,2,... n - 2)

and A' = (n - 1, n - 2, n, n + 1). Now observe that:

IN(K)uN(i)l = IN(K)I+2"-'-0.2IN(K)I = 0.751N(K)I+2" 2, K c AuA', i E A'-K

(2.15)

IN(K)UN(j)I " IN(K)l+2n- '-0.50N(K)I = 0.50IN(K)1+2 n- 1 , K c AuA', i e A'-K

(2.16)

45

,o . • • * o . = °• -o .o . . . • • . , . . - °. ,-°

We see that

0.751N(K)I + 2--2 < 0.50IN(K)l + 2--1 N(k) < 2". (2.17)

From (2.17) it follows that for the first n - 2 iterations all of the candidate solutions

have either no elements which belong to A', or at most one element. In iteration n - 1,

D = A U {j}, j E A', i. The remaining three iterations proceed by picking 3 nodes in

A' so that by the end of the n + 2 t" iteration, Di = A U A' Vi. Comm is off by exactly

n - 2, implying that the error can become arbitrarily large, and that it varies roughly as In

N. Thus Comm is not a favorable alternative to Greedy.

Observe that the fractional errors of Algreedy and Comm are the same for the class

of graphs, R,..

2.8. Summary

In this chapter the complexities of minimizing the number of clusters and gateway

nodes in a PRN were examined from a centralized standpoint. It is extremely unlikely that

an algorithm exists which could come to even a constant of the optimal solution and still

run in polynomial time. However, there are algorithms for DSP, with errors that grow

extremely slowly with the number of nodes. We have given best possible bounds for the

performance of some such heuristics, and doubt seriously the existence of a heuristic which

performs significantly better in the worst case.

No results have been obtained for heuristics for CDSP, and SCDSP. However,

minimizing the number of clusters certainly has a diminishing effect on the number of

nodes in the backbone network. This cuts down, to some extent, the amount of communi-

cation necessary to deliver inter-cluster messages. In the next chapter, emphasis will be on

minimizing the communication complexity and the number of gateway nodes, within the

framework of distributed algorithms, based on heuristics whose computational complexity

46

was analyzed in this chapter.

47

CHAPTER III

LflNXED-CLTJSTER ALG ORITHMS

The results obtained thus far have concentrated on the centralized problem, and

it now time to relate them to the issue of devising efficient distributed algorithms which

minimize the number of clusters in mobile, stationless PRN's.

1-j

A major part of this chapter deals with a linked cluster algorithm called GCLA,

which milnimizes the number of clusters identically to Greedy. First, collisions and acknowl-

edgement problems are ignored to make the mechanics of the algorithm and its equivalence

to Greedy easier to understand. This version is called DISTG for the Distributed Greedy

Algorithm. Subsequently strategies for collision minimization and resolution are presented.

Another algorithm called Tree Linked Cluster Algorithm is also included. TLCA does not

minimize the number of clusters as well as CCLA, but it has a significantly lower overhead

of communication.

3.1. The Distributed Greedy Algorithm (DISTO) Framework

In this section the model for subsequent analysis is presented and its assumptions

justified.

(a) The network itself is represented as a finite directed graph, H(V, A) with N nodes

and P edges. V is the set of users, and an edge is defined for a node pair (ij) if and

only if j can hear i. However, in most analyses only bidirectional connections will be

considered for reasons to be explained later. In this case we obtain an unidirected

48

.......... '.-..-. S

*.

graph G (V, E), where

E = (i,) (i,j) (i) E A}

Let there be M undirected edges in G. It is assumed that G is connected.

(b) Nodes must send messages on all the directed (and therefore undirected) edges

emanating from them. This is to capture the broadcast nature of the network.

(c) Errors in transmission are not allowed i.e. there are underlying acknowledgement

schemes. Other lower level protocols such as error detection and message formatting

are also assumed.

(d) Messages arriving at a node are queued, and then processed on a first come first

serve basis.

(e) The delay across any edge is finite but variable. Messages are assumed to be received

along a direction of an edge in the order that they were transmitted.

(f) Interference is ignored and is to be dealt with later.

This model is a variation of the one presented in 1141 which deals strictly with point

to point networks. Also, observe that (a) is a ".snapshot' representation of the mobile

network.

3.2. Performace Measures for Distributed Algorithmas

Two measures of performance have traditionally been considered for distributed

algorithms, both predicated on the notion of an elemental message. An elemental message

is an integer representing a node identity, the cardinality of a set, or some other such

quantity. The first measure of performance is the Communication Complexity, C, and is an

asymptotic bound on the number of messages sent in the worst case, as a function of the

49

~~~~~. . .. ............................... .... .. .. ........



problem size. In a network the problem size is usually the number of nodes, or the number

of nodes plus the number of edges M.

The Time Complexity T, is a measur'e of the total amount of time it takes to run

the algorithm in the worst case. Most of this time is taken by communication among

nodes, since typically, many computation steps can be carried out in the time that it takes

a message to be transmitted and received. So unless the algorithm is highly inefficient

computationally, it is reasonable to assume that computation time is negligible. Observe,

that if the algorithm takes exponential time, the assumption of zero computation time falls

through. Hence, Time complexity is measured as the asymptotic bound on the number of

units of time required, if the communication of an elemental message accross an edge takes

one unit of time.

It is important to realize that these measures do have their limitations. Firstly, they

are asymptotic, and do not account for possibly large multiplicative and additive constant

factors. Since most mobile PRN's are not very large, asymptotic results can at best be

viewed as crude measures to compare different algorithms for the same problem. For this

reason, the actual number of elemental message units will be presented with any results for

C or T. Secondly, the results are worst-case, and therefore not necessarily indicative of

typical performance. Lastly, for most packet networks there is a large overhead in sending

many short messages, as against sending a few longer ones. This is primarily due to the

fact that much header information goes into every packet, and our definition of elemental

message does not include this. To partially counter this effect, we will also give the total

number of broadcasts required, with any results for C.

Since there are two performance criteria for distributed algorithms something must

be said about the tradeoffs between them. In commercial wide area point-point networks, C

has an impact on the availability of the network for other functions, whereas T has an impact

on the grade of service offered to the users. In the tactical environment, these impacts can be

50

-a.-- AIA7



viewed as the level of security (i.e. likelihood of enemy interception) versus the timeliness of

decision making. In most networks, the amount of communication required is more sensitive

to fluctuations in dollar terms, than is the time taken to run the algorithm, and so C is

generally considered to be more crucial. Also, C always upperbounds T. However, in some

PRN's the value of timely service may be much more than that of less communication, and

so there is no application independent manner by which the tradeoffs of these measures can

be examined.

3.3. The Distributed Greedy (DISTG) Algorithm

The Distributed Greedy Algorithm finds a Dominating Set for the underlying graph

G, without taking into account the effects of interference. Recall that G consists of undi-

rected edges which represent the bidirectional connectivities between node-pairs. The reason

for not including the other edges is that we would like eventually to extend this algorithm

to a truly broadcast algorithm called the Greedy Linked-Cluster Algorithm (GLCA), in

which it is assumed that no acknowledgement schemes are present as lower level protocols.

If the connection is not bidirectional, then messages cannot be acknowledged in a direct

manner, and the problem becomes extremely complicated. DISTG contains virtually all of

the attributes which will enable us to claim that GLCA, the extended algorithm, minimizes

clusters as well as Greedy does. Also, the correctness of GLCA follows straightforwardly

from that of DISTG.

DISTG is entirely event-driven in its communication-there are no time outs. This

is desirable since it eliminates the need for accurate timers, but more importantly because

it limits the amount of communication. The algorithm is conducive to a high degree of

parallelism- different parts of the network may be in entirely different stages, and the

nodes terminate based on events which have occured, not on some period of time. This

clearly plays a role in keeping T down as well. A convenient assumption is that every node

51



knows the (bidirectional) connectivities of itself, and those of its neighbors -t 6 e start of

the algorithm. This can be achieved easily by a 2 stage flooding scheme.[5]

The idea of the algorithm is the following: Suppose a node, i, covers the largest

number of uncovered nodes in its second neighborhood. This means that if at that point in

time, any of i's neighbors, say j, is to be covered, then i would be that node in the graph

which would cover the largest number of nodes and which also covers j. So it is reasonable

to assert that a node, with only very local knowledge of the network topology would like to

elect as cluster leader its neighbor which covers the largest number of uncovered nodes. If

all nodes can be dominated by their most "highly connected" neighbors, a reasonably small

number of clusters can be expected. DISTG fulfils this goal, as we will see.

Data Structures at node 1:

Coninectivty. a list of edges which describe N(2R(i)).

Statr. a variable which takes values from {FREE, READ, TAKEN), depending on whetheriA
i is uncovered, a leader, or covered but not a leader.

Nstatus: a list indexed such that Nstatus() is the status of j E R~i).

UZlist: a list of tuples such that (a, b) E Uplist if" necessary changes in information on node

b which are caused by the declaration of a as a leader, have been made at node i.

UpdateStatus(a): a boolean variable which is either WAIT or NOWAIT. It is WAIT if there

is at least one node in N(i) from which new information is likely to be received because of

the declaration of node a as a cluster head.

k: the lowest indexed node of 9'(i) which has a maximum cardinality set of FREE neigh-

bors. This is clearly the most highly connected neighbor of the node as discussed above.

Katatur. a list of the k" values of all the node's FREE neighbors.

Fag. a variable which is set either UP or DOWN. It is UP if UpdateStatus(a)=WAIT

for some node a, or if no information has been received from the start of the algorithm on

k' for some neighbor of i. One can view Flag as a necessary check on extreme degrees of

parallelism among neighboring nodes, which could result in outdated events being acted

52



upon. When Flag is set to UP, one must interpret this as a step in the algorithm when the

node wants to update its information on the k* values of its neighbors.

S.ent a list of boolean variables, each set to TRUE or FALSE. 3Sent(l)=TRUE means that

i is 3 hope away from a cluster head, 1, and that it has broadcast the necessary information

pertaining to this fact.

Leader. the identity of the cluster leader of i.

The algorithm is now presented. We focus on how it works at a node, i. The

initialization is as follows:

Flag=UP since the node has no information on the k values of its neighbors.

3Sent(l)=FALSE V1;

Leader-- i;

UpdateStatus(a)=NOWAIT for all a E N( (i));

Nstatuso(j)=FREE Vj E R(i);

Uplist, Kstatua=0;

Send(kI);

As the values of k! are received from neighbors, Kstatus is updated. Once values of

k" have been received from all neighbors, the procedure TryHead listed below, is executed.

At this point i checks to see if it is the choice of all of its neighbors. If so, it declares itself a

cluster leader, changes its status to HEAD, and terminates the algorithm after broadcasting

the change of status to its neighbors. It also broadcasts N(i); we will see why this is done

later. TryHead is executed, as shown later, in response to various messages.

Event TryHead:

begin

If (Flag=DOWN) AND (Kstatus(j) -i Vj EKstatus) then (*is i ripe? *)

begin

53



Leader=i;

Nstatus(i) := HEAD;

Send(i is a headN(l)); [typo message]

TERMINATE;

end

end

Let us now consider the response of i to the message that one of its neighbors, ", is

a head. First it records the information that j is a head in Nstatus. A, (see code) is the set

of nodes in N(i) which are affected by i's declaration. These sets enable Natatus, Kstatus,

and Uplist to be modified to record all changes in N(i) due to j's declaration. After this,

s must pass on the new state to its neighbors if in fact there are neighbors which do not

know that j is a cluster head, and which have not terminated. This is necessary because:

(a) If i has changed its status, its neighbors must know that if they were to declare

themselves cluster heads, they would cover at least one less node. Also, they must

now disregard the value of k1.

(b) Suppose k; = i for some neighbor p. It is clear that this value can change, once

the number of FREE nodes covered by i does. Assume that the value changes to

q, where q is a node which would declare itself to be cluster leader, if only its free

neighbor p, would change its value of k* to q. Then we see that in order for q to be

able to change its status, " must communicate the new status of the node i, along

with the information for p to calculate the size of Ps new FREE neighborhood.

Hence, i broadcasts the fact that it is TAKEN by j, and NO). Note that if there

are no FREE nodes in N(i), i will broadcast the information and then terminate. This

situation is illustrated by figure 3.1, and the code presented below:

Event DoTaken: executed when Rec(TypeO from j):

54

o-. * ~ - -



8

7

410

2- 36

4 5

After 3 declares itself a HEAD, nodes 7 and 9 will prefer 8 instead of 10.

begin

If (j, i) 0 Uplist then

begin

If Leader-i then Leader-j; (*assign i to leader 5*)

(* Find i's affected neighbors )

A, = -"(i) n {k: k E N(J) &ad Nstatus(k)-HEAD};

NstatusO) = HEAD;

Delete Kstatus); ('j is not FREE anymore )

For al p C N j) s.t. Nstatua(p)" HEAD do

Nstatu(p)=TAKEN;

( Modify the datastructures )

For all k e A. do

begin

Delete Kstatus(k);

Uplist=Uplistu{(j, k)}; (*Since G • A-, (1, i) EUplist )

end;

( Any nodes in N(i) which do not know that j is a HEAD are told so.

55



If 3k E N(i) - 1(j) such that (j,k)o Uplist then

begin

UpdateStatus(j)=WAIT;

Send(i taken by j, NO)); [typel meuage]

end

else

begin

UpdateStatus(o)=NOWAIT;

If Kstatus(m) = i for some m e Katatue then

TryHead; (*Since Flag may be down S)

end;

If (k: k E S(i), Nstatus(k)=FREE} - then TERMINATE;

end

end

Observe that if i broadcasts, it also sets UpdateStatus(j)= WAIT. The reasons for

doing this are best illustrated by the simple example of 5 nodes connected in a line. (Fig.

3.2.) Another thing to note is that i does not send a value of ki* since it is now T.AKN.

0---0 0---0--0
2 3 4 5

56

.5.. .........................................................



It can easily be seen that the only node that can declare itself to be a HEAD, after

Flag=DOWN for the first time, is 2. This node sends out the information that it is a leader

to nodes 1 and 3. Node 3 receives this, and in executing Event DoTaken, sends out its

broadcast. Now suppose UpdateStatus(j) is not set to WAIT. Then it is possible for Flag

to be DOWN. Observe that the most current value of k; 3 possesses is 3. Its only other

neighbor is not free, and so event TryAcad has occured. Hence 3 becomes a cluster head.

Similarly, 4 and 5 will also become cluster leaders. By ensuring that Flag=UP, we force 3

to wait until node 4 has had a chance to reevaluate its value of k', which is clearly 4 itself.

We now move to the case when i receives a message sent by a node j, whose neighbor

1, has just declared itself a cluster leader. If i is just one hop away from I then it will execute

Do Taken subsequently, if it has not done so already. Otherwise i must be 2 hops away from

1. C1 is the set of nodes in N(i) which are affected by I's declaration. When i receives

a typel message pertaining to a leader I for the first time, it has enough information to

modify all its variables correctly: All i's non-head neighbors, adjacent to I are in the set C1

which is determined as shown in the code. Hence (l,i) is added to Uplist, and all subsequent

typel messages pertaining to I are ignored.

Again, i sets UpdateStatus= WAIT, but only if there is a chance of it declaring itself

a cluster leader incorrectly. Fig. 3.3. shows this condition, and also illustrates some of the

points made earlier:

Event TwoAway: executed when Rec(Typel message from j; 1 is leader)

begin

('Continue only if i is 2 hops away, and has not heard about j's declaration*)

If (1,i) OUplist and I o N(i) then

begin

Uplist=Uplistu{ (lj));

C, = {N(i) n N(l) n {k :Nstatus(k)-'HEAD));

Nstatus(l)=HEAD;

57

*.* . . * . . .



(*Modify datastructures*)

For allkce Ct do

begin

Delete Kstatus(k);

Upiat =UpiistU{(t, k)};

end;

For al P IS NYl) n fl i s.t. Nstatw"7#HEAD do

Nstatus(p) =TAKEN;

If Nstatus(i)=FREE then Recalculate ki*.;

Send(l,N(l), and [k* if Nstatum(i)=FREEl); [type2 message]

Upist=UplistU{Y(, i) };

If Bp: (l,p) A~ Uplist, Kstatua(p)=i then

tUpdateStatus(I) =WAIT

also

be&i

UpdateStatus(l)=NO WAIT;

TryHead;

end

58



If {k: k E S(i), Nstatus(k)=FREE} = 4 then TERMINATE;

end

end

Node 1 has declared itself a leader, and node 5 has received a message from, say

node 3, intimating it of this fact. Now 5 has only 2 FREE neighbors left (6 and 7), both of

which had initially chosen 5 to be their most highly connected neighbor. If UpdateStatus(l)

were not set to WAIT, then it is possible that Flag=DOWN, and 5 would declare itself to

be a leader, which it clearly should not be able to do. When Flag=UP, 5 must wait to be

informed that 7 is now the most attractive candidate.

However, if i is none of its FREE neighbors' most highly connected neighbor, it is not

necessary to change UpdateStatus(l) to WAIT. If i is FREE, the new value of k,' must be

broadcast. This is calculated easily from Connectivity and Nstatus.

We now consider i's reponse to a type2 message. There are 3 possibilities: i is

either 1, 2, or 3 hops away. In the first and second cases, no communication is necessary,

but i must update its variables. This is done as shown in the code. It is possible that

UpdateStatus=NOWAIT, and s may execute TryHead subsequently.

If i is three hops away from I it must send an updated value of k!. Again, i has

all the information necessary to do this the very first time it receives a type2 message

pertaining to 1: E is the set of neighbors of i which are two hops away from 1, and not

HEADs. At this point i can find its most highly connected neighbor from Connectivity and

Nstatus. Hence, k,* can be broadcast without waiting to hear from the other nodes, if in

fact Nstatus(i)=FREE. To prevent s from rebroadcasting another type3 message pertaining

to 1, the boolean 3Sent is set to TRUE.

Observe that while i cannot calculate the new values of k" of all members of Ej, it

need not wait to hear from all of them before executing TryHead. This is because all of i's

.- 59

_. • . ". .'..-'., . . :- ; :--++.+t.'L +, - ; " " • .. . . . . . . .. . ... .



neighbors that preferred it before I's declaration will continue to do so after the declaration.

(See fig.3.4. for an illustration of this point.)

f2
It-  0to 3 7 3

9 6 ><D>
4 5 7 8 4 5

(a) (b)

Fir. 3.4.
Node 1 declares itself a HEMAD. Suppose node 6 receives a type2 message from node 3, but
has nort heard from node 5. In 3.4 (a), Kstatus(5) - 6 at node 6, and so 6 will not declare
itself head before hearing from node S. In 3.4(b) Kstatus(6)=5 before 6 ha. heard from 5,
and this value will not change even after it has.

Event OneTwoTbheeAway: executed when Rec(Type2 from j; 1 is leader)

begin

If (I' Ny()) OR (1 E N(N(i))) then (i.e. if i is 1 or 2 hops away from 1 )

begin

If Nstatuso)=FREE then

Replace the value of k in Kstatus;
UpistffUplist {((,j)l;

If ,Bk e i(i) - (I} s.t. (1,k)0 Uplist then

begin

UpdateStatus(1)=NOWAIT;

TryHead;

60



o.

end end;

end

else begin (*i is 3 hops away

E, = {k: k E N(i), Nstatus(i)#HEAD s.t. 3p E {N(k) n N(/))

AND Nstatus(p)# HEAD);

If Nstatus(i)=FREE then Recalculate k;

For all p E N(l) n N(N(i)) s.t. Nstatus#HEAD do

Nstatus(p)=TAKEN;

If not 3Sent(l) then (*Only one broadcast per head *)

begin

Send(l, and [k! if Nstatus(i)=FREE)I; [type3 message]

3Sent(l)fTRUE

end;

T"yHead;

end

end.

The only remaining case is the action taken on receiving a type3 message: When

this happens i checks if it is 2 hope away from 1. If it is not, then it must be 3 or 4 hops

away and merely updates its Kstatus. If it is 2 hops away, it replaces the new value of k',

and modies Uplist appropriately. It then checks to see if the conditions have been met to

CLOSE UpdateStatus(l).

Event TwoFourReceive: executed when Rec(Type3 from j; 1 is leader);

begin

If 1 G N(N(i)) then

begin

UpliSt=Uplist U{(I,j));

Replace k: in Kstatus;

61



If Bk E N(i) such that (1, k) i Uplist then

begin

UpdateStatus(I)=NOWAIT;

TryHead;

end

else

UpdateStatus(l)= WAIT;

else

Replace k, in Kstatus; TryHead;

end.

3.4. Correctness of DISTG

The approach taken is to show that DISTG, and a centralized algorithm Multi.

greedy produce exactly the same dominating sets for all graphs. Multigreedy is sequential,

but may pick more than one node for the dominating set in a single iteration.

Multigreedy converts the undirected graph G to a directed one. This is done by replacing

every edge in G by 2 directed edges going in opposite directions. In addition a loop is added

at each node. Interpret a directed edge, (ij), to mean that if i were to be chosen at that

stage of the algorithm, then j would be covered. Initially, all nodes are uncovered so if a

node is chosen then its entire closed neighborhood is covered. This explains step 0 (see

code). Following, is some notation that helps explain operations on the directed graph:

N 4 (') = the outneighborhood of node i.

A Ripe node is defined as follows: i is Ripe

[IN+(i) > I1N+()IOR 1N4(i)l = 1N4(i)i AND i <a] (Vj g (N+()).

Some explanation is in order. i is ripe if and only if it is the most "highly connected node"

62



of all its FREE neighbors. The free neighbors of i are N + (i). None of the neighbors of

these free neighbors of i should have a greater outdegree than i. This gives the expression.

Algorithm Multigreedy: Input: An undirected graph, G(V,E).

(0) Replace every edge (iU) in E by 2 directed edges (ij) and (j,i). For every node i,

add (i,i). Set D -

(1) K= {: iiRipe}.

(2) D=DuK

(3) Delete all edges coming into Fq(K).

(4) If any edges remain, goto step 1; else STOP.

Output: a dominating set, D.

Once a node i is chosen, by our interpretation of directed edge, all edges incoming

to the nodes in I(i) must be deleted. This is done in step 3. If there are any edges left

at the end of an iteration, there are still some uncovered nodes remaining, and so step 1 is

repeated.

Observe that the k values in DISTG help determine which nodes are Ripe in the

network a particular stage of the algorithm. The deletion of an edge in Multigreedy is much

like the book-keeping done for Nstatu in DISTG. In the following argument we will verify

that only Ripe nodes are declared cluster leaders by Procedure TryHead in DISTG.

After the initial values of k° have been received at the least numbered node with

the highest outdegree, and its Flag=DOWN for the first time, the node will declare itself

to be a cluster head, broadcast, and terminate. This ensures that the algorithm will in fact

63

-. -.,-.~~~ ~ ~~ .- - .' -
' " " ' " -d , , . - -,



o" .. . .- •.-*- .- -- oo--.. . . . . . . . . . . . . . . . . - -

begin. Note that this node is Ripe in the first iteration of Multigreedy.

The next Lemma will be useful in the proof.

Lemma 3.1. If 2 nodes declare themselves to be cluster leaders at the same time, they

must have no FREE neighbors in common.

Proof: By contradiction. Let nodes p and q declare themselves to be leaders

simultaneously, and let their neighborhoods have some FREE node, r in common. Since

both nodes consider themselves to be ripe, r must have considered each one of them its

most highly connected neighbor at different times. Suppose, without loss of generality that

q was an earlier value than was p. When k; changed to p, it must have done so because of

a decrease in IN+ (q)I. It is now argued that r could not have learned of this decrease from

q itself.

Suppose q knew that its FREE neighborhood had decreased, before its declaration. When

q broadcast this typel or type2 message, it had to have set UpdateStatus(t)=WAIT for

some t, implying that Flag must have been UP. Thus it must have received the modified

value of k* before setting UpdateStatus(z)=NO WAIT, i.e. making it possible for Flag to

be DOWN, and so it could not consider itself to be Ripe. This contradiction shows that q

could not have known of the decrease in its FREE neighborhood before declaring itself a

cluster head, implying that r could not have heard of the decrease from q.

So suppose r heard from some u 0 q, and let t be the node whose declaration

resulted in the decrease in IN+(q)l. It is clear that q and t must have at least one node,

g in the intersection of their closed neighborhoods which was FREE before t's (and q's)

declaration. Suppose g = q. Then k,* = t, and q could not have declared itself a HEAD

without hearing about t's declaration. If g = t then Kstatus(t)=q at q, implying that t

could not have declared itself HEAD. So g is some node other than q and t. Now since t's

declaration preceeds q's, it follows that when g was FREE, k; = t. Then Nstatus(g)=t at q

when it declares itself HEAD because q does not know of t's declaration. This contradiction

64



shows that g does not exist, implying that the FREE neighborhood of q does not change

by t's declaration :* k, does not change :* p could not have declared itself a cluster head

until it learned that q had.

Q.E.D.

Now suppose that a node i declares itself a cluster leader at some time, T of the

algorithm. There are 2 possible cases:

Node i was a FREE node just before it became a HEAD.

Node i was a TAKEN node just before it became a HEAD.

Case 1 : In general some of i's neighbors are free, and others already taken when i becomes

a leader. Note that none of the neighbors can be leaders, since i is FREE. Now,

suppose that N(i) consists of no TAKEN nodes. Then the value of IN+(i)I has not

changed since the beginning of the algorithm. Since, i is going to declare itself a

HEAD, all of its neighbors must have regarded it as their most highly connected

neighbor at some earlier time in the algorithm. Now observe that values IN+(i)

never increase, implying that since none of the nodes in IN(i)I has been TAKEN, i

still has to be the most highly connected node of all its neighbors.

But suppose that some of i's neighbors are TAKEN nodes. Let j be the neighbor to

be most recently taken before time T. Note that this time must be strictly before

T, because no 2 nodes can simultaneously become cluster leaders if they have a

Free node in common. The Free node in this case is i. Now suppose that some

FREE neighbor of i, say p does not have k* = i at time T. Obviously, i does not

know this since it is about to declare itself a HEAD. This means that i was p's

most highly connected neighbor at some earlier time. This situation could only

have changed by a subsequent decrease in the value of IN+(i)I. The last time this

happened was when j was taken. At this time, i must have sent a type 2 message

to node p, and set its Flag to UP. At time T, i's flag is DOWN, which means that

node p considered i to be its most highly connected neighbor even after IN+(i)l

65



had reduced to its value at time T. This contradicts our assumption, and DISTG

always picks a Ripe node in this case.

Case2 : Since i is taken at time T, at least one of its neighbors has already declared itself a

cluster head. Let j be the neighbor to become a head most recently before T. Before

" received the typeO message from j it could not have considered itself Ripe because

j, its neighbor did, and we know that 2 neighbors can never consider themselves

Ripe simultaneously. So after receiving the typeO message from j, i set its Flag to

UP and broadcast a typel message to all its neighbors. All its free neighbors must

have declared it to be the most highly connected node, and therefore we know that

even after the most recent reduction in IN+'(i)I, due to a typeo message, node i is

the most ripe nodes. However, observe that N+ (i) I could also have been reduced

because of typel messages received. That this cannot lead to an error has already

been shown in Case 1. From ",is we conclude that if " is TAKEN at time T, it

cannot declare itself to be a leader unless it is ripe.

We still have to show that the algorithm never terminates before covering all the

nodes, and that it never deadlocks. The second of these issues is resolved easily in light of

the preceding discussion. DISTO can never deadlock because there are always Ripe nodes

in the graph, until all nodes are covered. This follows from the fact that Multigreedy does

not deadlock. Now we show that the algorithm will never terminate if there is even a single

uncovered node in the network. This can be seen from the stopping conditions at a node-

either the node is a cluster leader, or it has no FREE neighbors. An uncovered node always

has status FREE, and so none of such a node's neighbors can terminate until it has been

covered.

This completes the proof of correctness for DISTG.

66

....................................



-g2

..

3.5. Equivalence of DISTG and Greedy

We have shown DISTG and Multigreedy pick identical Dominating sets; hence it is

sufficient to show that Multigreedy and Greedy behave identically, in order to establish the

equivalence of Greedy and DISTG. For any graph G, with some order of numbering on its

nodes, both Greedy and Muitigreedy have unique solutions. Let RG, and TG respectively,

be these solutions for an undirected graph G(V, E).

Theorem 3.2. VG, TG = 1?.

Proof: Let R< = {gi,g2,.... g.} where gh is the node picked in the kth iteration.

Define Si to be the set of uncovered nodes covered by g, when it is picked. As before let

154 = Mi.

Now let Tk = {t I... t.) be the set of nodes picked in the kth iteration of Multigreedy.

Observe that 2 nodes cannot be picked in the same iteration of Multigreedy if they have any

FREE nodes in the intersection of their neighborhoods. Define Ci to be the set of uncov-

ered nodes covered by tj when it is picked. Clearly the Ci's are mutually disjoint Also, let

I Ci I = bi. By the definition of the algorithms, we know that IUL 1 2! k, which implies

that it is sufficient to show that Uj= Tj c RGVk. We show the following by induction on

k, the number of iterations:

(i) U# T C RG

-. (iii) gi =t = Si =Cj.

(a) Basis k = 1: Initially, all the nodes are uncovered. Multigreedy selects least num-

bered nodes which have the maximum sized neighborhoods in their own second

neighborhoods. Trivially, g1 has this property, i.e. g1 E T1. Now suppose that

i E T, for some i i gl. At some iteration of Greedy at least one of the nodes in

67

,*,' - , % ' . .-' . . 9. .. . . . . - ..9. .- -.... 9 99 . 9 . . .. -9..- 9 . . . . -9 . .. . . . . . 9 . - . . . . . . .. . . . • . . .-



N(i) will be covered for the first time. Let j be such a node. By definition, i is

the least numbered node in the graph which covers the largest number of nodes

including j, so it follows that i will be picked by Greedy. Let i = g,. Now observe

that the set of uncovered nodes covered by i is the same when it is picked by either

algorithm. i.e. Ci = S. = R(i).

(b) Inductive Step: k = K + 1: By assumption Multigreedy has picked g1,... ,gk, and

possibly some more nodes in RG. Also if gi = t. = Si = C for all t3 's picked in

previous iterations. Now let's look at gK+i. If it has already been picked in previ-

ous iterations of Multigreedy, then condition (ii) of the hypothesis is met. Suppose

gK+1 was not picked in previous iterations. By the hypothesis we know that all the

nodes in Sh+I must be uncovered in the K + 1 " iteration of Multigreedy. Then since

.. ,... ,/~c} C Uf. T, it follows that gK+t is Ripe, and therfore that Mtdtigreedy

picks it in iteration K + 1. Now suppose that i $ g.+j is Ripe in the K + 1*

iteration. Consider the set IN+ (i) . None of these nodes is covered in the first k

iterations of Greedy. Thus the first node, j, in the set is covered in Greedy after

iteration K, say iteration w. The node which covers it in Greedy, g., must be Ripe

at this stage. Since j is the first member of N+(i) to be covered, it follows that i

must be the highest connected neighbor of j i.e. g,, = i. Hence we have shown that

all three conditions of the hypothesis hold.

Q.E.D.I

We have already shown that DISTG returns the same dominating set as Multi-

greedy. This, with the above result, establishes that DISTG, and Greedy minimize the

number of clusters identically. Based on the work in Chapter 2, it can thus be strongly

argued that DISTG minimizes clusters as efficiently as could be hoped for.

68

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. L " " ' " , " " " ' ' - "
"

- ' !



3.6. Complexity of DISTG

Initially, the list Connectivity must be established at each node. This takes 2N

broadcasts. All subsequent communication is triggered by the declaration of a leader.

The number of broadcasts resulting from node i becoming a leader is no more than F =

IN(N(N(i)))I. So, the total number of broadcasts < "=1 F + 2N

Now observe that the number of elemental messages in each of typeO, typel and type2

messages sent is bounded by the size of the neighborhood of some cluster leader, plus 2.

Type3 messages consist of only 2 elemental messages. Let 6 be the size of the largest

neighborhood. Also, let Tj = IN(N(i))I. We have:

d"

c:5 ZT,(2 + IN(di)l) + (, - Tdj2 + 2N6 (3.2)
ira1

(Recall that d" is the number of nodes picked by Greedy. To obtain an accurate expression

for C which depends only on M and N, we will make the assumption that the network is

regular i.e. all nodes have the same degree. Then IN(d.)I = = , Vi. It is also assumed

that 6 >> 2, and that communication for establishing Connectivity is negligible. So that

(3.2) is simplied to
iC 5 _< (d, + (k- d)

The analysis of C is broken into 3 cases, depending on the density of the graph. This is

because (3.1) gives a tight bound for dense graphs, whereas the actual number of messages

exchanged pertaining to a particular cluster head varies directly with the density. We will

also make use of the bound for d" derived in Theorem 2.6.

Case 1: 3 < N: It is easily seen that Td, = + 62 and Fd- T,- = 6(8 -1)'. Thus

C _ d'((1 + 62 )6 + 6(- 1)2).

dC'O( ) )< O(N -N-/T+2M +N)=O(N-NV+ 2M) (3.3)

Case2: 63 > N 6 < N: As in Case 1,

SC <5 d*((1 + 62) 6 + 6(6 - 1) 2).

-9

. .o

.



C = o(63d') <_ O(bNd') _ 0(2MN - 2Mv+ 2M + 2M) = O(MN - MV 1+ 2M)

(3.4)

Case 3: 82 > N: Then

C < N6d" 5 2MN - 2MV2-M- i +I = O(MN - Mv2--M-+1) (3.5)

To summarize:

C= I O(N2- NV2-Ml)' 21M t<_N _M+I
O(MN - MIT +2-M), 1+ A2 < N < 2 MT2

Observe that the performance degrades with the density of the graph. It is impor-

tant to note that it may be possible to modify the algorithm to eliminate all broadcasts of

neighborhood sets of leaders. This would surely complicate the protocol, and it is for rea-

sons of exposition that we chose not to do this. However, such a modification would reduce

C by a factor of about Im, resulting in better performances (about O(N) and O(N 2 )) for

the 2 cases in the summary above.

The Time complexity is determined quite simply. Every time a leader is declared,

4 types of messages are broadcast, and all of the type are broadcast at the same time. So

T < 4d" = 4(N - -. + 1 + 1) =- T = 0 (N - 2M-+1). (3.7)

3.7. The Greedy Linked Cluster Algorithm (GLCA)

The aim of this section is to extend DISTG to accomodate effects such as interfer-

ence, and the lack of lower level acknowledgement schemes.

There are 2 kinds of collisions: inter and intra leader. Recall that all communica-

tion in DISTG is triggered by a node declaring itself a leader, and consists of 4 kinds of

messages. By intra-leader collisions we refer to those collisions which occur because of the

70



communication triggered by the same leader. Inter-cluster collisons are defined analogously.

Since a node has rather restricted knowledge of what is going on in the rest of the network,

collisions are inevitable within the framework of DISTG.

Typel intra-leader collisions can be eliminated quite simply as follows: include a

schedule of how the the neighbors of a newly declared leader should broadcast within the

typeO message. This is done without any wastage of the access channel because the leader

knows the connectivities of its neighbors, and can thus tell when 2 or more of these neighbors

can broadcast simultaneously. When a typel, or type2 message is broadcast by a node, it

can similarly schedule the broadcasts of its neighbors, thus minimizing collisions to some

extent. However, in these cases the method may not be efficient.

Inter-leader collisions appear to be very hard to predict, and there may be no way

to minimize them. Notice however, that TypeO inter-leader collisions never occur since 2

nodes may declare themselves to be leader only if they do not share any FREE neighbors.

The next step is to describe a broadcast protocol which resolves the collisions which

do occur. Consider the following simple scheme. Time is slotted such that the length of

a slot is equal to the time taken to broadcast a packet. There is a global clock so that

the slots are perfectly synchronized. Packets are broadcast at the beginning of a slot. The

transmission probability, p' of a node, i, is the likelihood of it transmitting a packet in a

given slot given a message to be transmitted. We set p, = (maxj.ER(i) JR-(j))-l. This

access scheme has a throughput of at least j. To see this suppose that node i has A

neighbors. It is clear that 17 t 3 y Vj E 21(i). The conditional probability of a packet

from i getting through in some slot, given that i does transmit a packet in that slot is thus

> (1--- I)A, which converges from above to 1. Retransmission probabilities for collided

packets are adjusted to maintain the values of p'. Unfortunately, expected delays might

be quite high for this scheme, but it seems quite difficult to develop multiaccess strategies

for this situation which assure both high throughput and low delay. Note that since the

71

.... .... ......" •" .,. 
'

......... .. .... .. °



packet lengths are very small, a TDMA scheme over all nodes of the network might be

reasonable in terms of throughput and delay. However, every node would then have to

know the identities of all the other nodes in the network; also, additions and deletions of

nodes would become difficult.

We now deal with the problem of acknowledgements. It is clear that the existence

of some acknowledgement scheme is essential to the working of any protocol. Observe that

typel messages acknowledge typeO messages, type2 messages acknowledge typel messages,

and type3 acknowledge type2. However, type 3 messages are never acknowledged, and other

messages need not be acknowledged by all the sender's neighbors. Another unacknowledged

message is the initial broadcast of k*. It is clear that while the algorithm does provide some

form of acknowledgement for many of the messages, it does not deal with the problem ade-

quately. The precise nature of a more complete scheme depends on the kind of application,

in particular on the nature of the broadcast channel. For a good explanation of the issues

involved see [18].

3.8. The Tree Linked Cluster Algorithm (TLCA)

While DISTG minimizes the number of clusters very efficiently, it does this at a high

cost of communication, and is only applicable to sparse graphs. If the PRN is extremely

dynamic and the control algorithm must be run very frequently, then DISTG is not a good

choice. When a low value of C is crucial, our standards of optimality should be lowered.

In presenting TCLA, we will first use the DISTG framework (from section 3.1), and then

suggest ways to deal with collisions later.

The idea behind TLCA is as follows: Initially every node knows its second neighbor-

hood, calculates its value of k" (the identity of the least numbered neighbor with maximum

degree), broadcasts this value, and waits to hear the corresponding values from all its neigh-

bors. So far the algorithm is identical to GLCA. However, the values of k' are not allowed

72

e .. .



L 
-°

to change for the rest of the algorithm. Now observe that some nodes will not be preferred

by any of their neighbors. One such node is the highest numbered node of smallest degree.

We call such nodes leave8. A leaf forces its preferred neighbor to become a cluster head

and then terminates. This new head then broadcasts its status, and all its non-terminated

members broadcast the fact that they are now covered. When a non-head recieves a mes-

sage that one of its neighbors is covered, it disregards that neighbor's value of V and then

checks to see if it is a leaf. Thus all communication is triggered by Leaf nodes. The code of

the algorithm is presented below:

Data Structures at node 1:

Connectivity: a list which contains the adjacencies of the first and second neighborhoods of

Status: a variable which takes values from {TAKEN, FREE, HEAD}.

k.: a variable with value equal to the identity of the least numbered neighbor of i with the

maximum degree in N(i).

Latatu :. a list of neighbors j : k = i.e. those neighbors which prefer i.

Leade the identity of the cluster leader of node i.

Initialization at node 1::

Status=FREE;

Leader-i;

Send(k );

Rec(k;) from all neighbors;

Update Lstatus;

Event CheckLeaf: executed after receiving k" from all neighbors.

73

i"~



begin

If Latatus=0 then

begin

Send(k: become a HEAD);

Leader=k?;

Status=TAKEN;

TERMINATE;

end

end.

Event BeHead: executed when Rec(i become a HEAD);

begin

Leader-i;

Status=HEAD;

Send(i HEAD);

TERMINATE;

end.

Event TelCovered: executed when Reco HEAD);

begin

If Status=FREE then

begin

Status=TAKEN;

Leader=j;

Send(i covered);

end.

74



end.

Event Revise: executed when RecUj covered);

begin

Lstatus=Lstatus-{j);

CheckLeaf;

end

A few comments are in order. Whenever a node is covered by a head it sets

Check=FALSE, because it need never force another node to become a HEAD. However, if

a FREE node recieves a message that one of its neighbors has been covered, it must then

check to see if it is now a leaf. The algorithm terminates at a node when it becomes either

a HEAD or a leaf. If a node is neither, it follows that Latatus $ , and there is some

uncovered neighbor which prefers it. Therefore the algorithm should not terminate in this

case. When all nodes are covered it is clear that the algorithm will stop at all nodes.

The complexity of TLCA is now analyzed. A node does not broadcast more than 4

times. Two broadcasts go in establishing the list Connectivity. Subsequently a node may

be a leaf, in which case it broadcasts once; or a HEAD in which case it broadcasts once

to declare its status, and it may have had to broadcast once earlier to indicate that it was

covered by a neighbor. Thus the number messages broadcast is:

C :54M C O(M)

The Time complexity depends on the number of clusters. This number is trivially

bounded by N. For every cluster leader declared, one broadcast comes from the leaf; one

from the head, and one from each of the non-terminated neighbors of the head. Thus

T < 3N #- T = O(N).

75

- .. *!< d.. ~ :*- -.%~%.~4.-'.-'-W - \%

* " .- .** -a .



This represents a substantial improvement in complexity over DISTG. However,

some accuracy is lost in minimizing the number of clusters, and this loss is reflected in a

lower value of T. For example, look at Fig. 3.5.

13

5 12 11 6

Fit. 3.5
TCLA picks {1, 8,9,10,11,12,13}, whereas Greedy picks {1, 13}

Note that the algorithm will never choose N clusters, and it represents a significant

improvement over ITF (recall Fig. 1.4.)

Collisions may be mnimized by each head sending a schedule of when its neighbors

should transmit that they are covered. Collisions are resolved by the same scheme as they

were in GLCA. Acknowledgement schemes will also be similar for both algorithms.

76



3.9. Summary

Two Linked Cluster algorithms have been presented and analyzed. GCLA mini-

mizes the number of clusters identically as Greedy. Thus this algorithm produces cluster

organizations which will in general, lend themselves to standard solutions of the hidden

terminal probem, such as Busy Tone. However it does not fare as well in the amount of

communication required. Since this will affect the number of collisions in the network ad-

versly, GCLA is probably best suited to environments in which the topologies are not highly

dynamic. TLCA is well suited to more mobile situations since it has extremely low values

of C and T, but clusters may not be minimized very well. Limitations of our work, and

specific suggestions for further work are mentioned in the next chapter.

77



CHAPTER IV

CONCLUSION AND SUGGESTIONS FOR FURTHER WORK

4.1. Conclusion

Considerable insight has been gained in the difficulties associated with minimizing

the number of clusters in stationless PRNS's, and plausible approaches to solve these prob-

lems have been suggested. We showed that 3 different formulations of the minimization

problem are NP-complete. It was then shown that it is extremely unlikely that an efficient

heuristic exists with constant bounded differential or fractional error. A simple greedy

heuristic Greedy was analyzed extensively in terms of its worst-case fractional error, and it

was shown that other, more complicated algorithms do not behave significantly better in

the worst case. It was also proved that a famous bound by Vizing, for the cardinality of

the minimum dominating set is also met by the dominating set selected by Greedy.

In the third chapter, we presented 2 distributed algorithms, one which produces the

same dominating set as Greedy, but which entails considerable overhead in communication

and is inefficient for dense graphs, and another in which the amount of communication is

cut down significantly, but at the cost of not miniriing the number of clusters as well as

Greedy. We do not claim that either of these algorithms could actually be implemented

without modifications, some of which are discussed in the next section, but feel that some

headway has been made on a difficult problem.

78

.-c. - " ' - . -



4.2. Suggestions for Further Work

In this section some of the limitations of the work in this thesis will be presented,

along with suggestions for further research.

There are a number of interesting issues having to do with the centralized problem.

First, we have given no results for worst case performance of heuristics for CDSP and

SCDSP. Second, an average case analysis of algorithms such as Greedy, which have the

worst-case behaviour described in theorem 2.5, would help better understand how they

actually do in pr.-. ,re. Third, all results mentioned in this thesis apply to the general

case, in which the graph topology can be anything so long as it is connected. However,

under certain classes of applications, it might be reasonable to assume that for example, all

transmitting radii are equal, or that every radio is connected bidirectionally, to the same

number of radios. Another possible restriction is to assume that all radios must be within

a certain constrained area (say a square of side K miles.)

We have some very preliminary results for the case of special graph topologies, and

mention them here solely for the benifit of the interested reader who wishes to gain some

insight into these problems.

Lemma 4.1. G is a representation of a PRN in which all transmitting radii are equal only

if the following structures are not subgraphs of G: (Figure 4.1.)

Proof: Fig. 4.1(a) can never be a subgraph because at most 5 non-intersecting

circles of radius r can be drawn so that all their centers are contained in another circle of

radius R.

Now suppose that 2 radios a, and b are both connected to 2 other nodes c, and d. It is easy

to see that the distance between c and d is < 2r. This means that a third radio, e which is

79



(a) (b) Cc)

Flr. 4.1

shared by a and b must be connected to either c or to d.

Define the i .. , to be the cardinaLity of the minimumn cardinality maximal indepen-

dent set of G.

Lemma 4.2. i,,. = k. for a -raph C, if the fo;lowing structure is not a subgraph:

Proof: Let D be a minimum cardinalicy dominating set, and suppose that it is not

an independent set. Then let a and & be two adjacent nodes in D. Observe now that for

every node in D there must be at least one node (including itself) that it covers exclusively

i.e. no ocher member of D is adjacent to it. Lf this were not true then at lea.s one node

80

". . "". """-- . -""-""-"-""..--'.""..-."..,.,....""..-" .........---",-.-.-..-..-..-.--"-'...--..."...".".....-.-..



could be removed from D without losing the dominating nature of the set. So let O be

the set of nodes covered exclusively by node a. If O = {e} then the set D u {e} - {a} is

a dominating set, and c is not adjacent to any other node in D. So let 10.1 > 1. Then

let e and f be 2 nodes in 0.. Now observe that a is adjacent to b as well, and we know

that it cannot be adjacent to 3 mutually non-adjacent nodes. It follows that e and f are

neighbors. In fact since these nodes were arbitrarily picked from 0,, the members of this

set must form a clique. Then it is easy to see that D U {c} - {a} must also be a dominating

set, and that none of the nodes in this set are adjacent to e (except itself). In this way we

can keep replacing nodes of the dominating set until they are all mutually nonadjacent i.e.

the set is independent From this we conclude that i ,i is no bigger than K,. Now observe

that every (maximally) independent set is a dominating set. Thus i,, >_ K.. The result

follows.

We now turn to the work in Chapter 3. There are two major limitations of the

algorithms presented. First, there are no global terminating conditions: i.e. a node has

no way of knowing that the algorithm has terminated at all other nodes. Secondly, nodes

are merely assigned to leader; clusters are not linked by gatewa$ nodes. Thus our work on

distributed algorithms can be improved by incorporating these features.

It is clear from this thesis that bad linked-cluster organizations can result in disas-

terous consequences. An interesting area of research is to examine the tradeoff of minimizing

the number of clusters and of these consequences. We also argued that gateway nodes should

-. minimized. It would be interesting to explore the tradeoffs among the three problem

formulations: DSP, CDSP, and SCDSP in terms of the most efficient linked-cluster organi-

zation. A better understanding of what multiaccess method is to be used once the clusters

are set up, and of what the best routing strategy is, are prerequistes to attempting such an

analysis, and we suggest work in these areas as well.

81

7"'-."



References

[1] R. E. Kahn, S.A. Gonemeyer, J. Burchfiel, R. C. Kunzelman, "Advances in Packet

Radio Technology," Proc. of the IEEE, vol. 66, no. 10, pp. 1468-1496.

[2] R. E. Kahn, 'The Organization of Computer Resources into a Packet Radio Network,"

IEEE Transactions on Communications, vol. COM-25, pp 169-178.

[31] R. Nelson, "Channel Access Protocols For Multi-Hop Broadcast Packet Radio Net-

works," UCLA Computer Science Dept. Report, CSD-820731.

[4] J. C. R. Licklider, A. Vezza, "Applications of Information Networks," Proceedings of

the IEEE, vol. 66, no. 11.

[5] D. J. Baker, A. Ephridemes, "The Architectural Organization of a Packet Radio Net-

work via a Distributed Algorithm," IEEE Transactions on Communications, vol. COM-

29, pp. 1694-1701.

[6] F. A. Tobagi, L. Kleinrock, "Packet Switching in Radio Channels: Part II - The Hidden

Terminal Problem and the Busy Tone Solution," IEEE Transactions on Communica-

tions, vol. COM-23, pp. 1417-1433.

[7] C. H. Papadimitriou, K. Steiglitz, Combinatorial Optimization - Algorithms and Corn-

plexity, Prentice Hall, 1982.

[8] G. Cornuejols, M. L. Fisher, G. 1. Nemhauser, "Location of Bank Accounts to Opti-

mize Float: An Analytic Study of Exact and Approximate Algorithms," Management

Science, vol. 23, no. 8, pp. 789-810.

[9] A. M. Geoffrion, "Lagrangian Relaxation for Integer Programming," Mathematical

Programming Study, vol. 2, pp. 82-114.

[10] D. S. Hochbaum, "Approximation Algorithms for the Set Covering and Vertex Covering

Problems," SIAM Journal of Computing, vol. 11, pp. 555-556.

[11] V. Chvatal, "A Greedy Heuristic for the Set Covering Problem," Mathematics of Op-

erations Research, vol. 4, pp. 233-235.

[12] D. S. Johnson, "Approximate Algorithms for Combinatorial Problems," Journal of

Computer System Science, vol. 9, pp. 256-278.

82

. . . . . . . . ..- ................. .. ... . . . .. . . | . ..° .' . '. . " ." "',3 ,"". '° .' .,-" . - " " ."-" . "%"-, ."." " . -. ,-".. % ."-" .' ,'-' ,' ,, ."-" " , '- -".. " " ' S"" .. . %



[13] M. R. Garey, D. S. Johnson, Computers and Intractability- A Guide to the Theory of

NP-Completeness, W. H. Freeman, 1979.

[14] R. G. Gallager, "Distributed Minimum Hop Algorithms," MIT Laboratory for Infor-

mation -,.d Decision System Report, P1175.

[15] C. Berge, Graphs and Hypergraphs, Dunod, Paris, 1970.

[16] R. G. Gallager, Private Communication.

[17] V. MacDonald, *The Cellular Concept," Bell System Telecommunication Jounal, vol.

58, No. 1.

[18] R.. Karp, "Probabilistic Analysis of some Combinatorial Search Algorithms," in J.

Traub (ed.), Algorithms and Complexity: New Directions and Recent Results, Aca-

denic Press, New York, 1976.

[19] R. Sinha, S. C. Gupta, "Mobile Packet Radio Networks- State of the Art," IEEE

Communications Magazine, vol. 23, no. 3.

83

. . . . ................. .



Distribution List

Defense C 'enter 12 Copies
Camero~n
Aexan-, .~.';._. -2314

Assis.- '-I Copy
Office of . ?._search, Code 200

Oi . . - 2 Cozies

Cnfordt :.n Z--:-Zn- -::gram
Co'e 41o

Arlinqcn, :;xg'. _2Z17

Cffaice- of " .' 7 .-=za-rch 1 Copy

Branch Office, Boston
495 Summer Street
Boszon, Massachusetts 02210

Office of :aval Research 1 CoPy
Branch Office, Chicaao
536 Sou-h Clark Strae
Chicago, illinois 0605

Office of Naval Research 1 Copy
Branch Office, Pasadena
1030 East Greet Street
Pasadena, California 91106

Naval Research Laboratory 6 Copies
Technical Information Division, Code 2627
Washington, D.C. 20375

Dr. A. L. Slafkosky 1 Copy
Scientific Advisor
Commandant of the Marine Corps (Code RD-1)
Washington, D.C. 20380



Office of Naval Researchi I CoOV
Code 455
Arlington, V_-ginia 217

Office of Naval Research I Copy
Code 458
Arlington, Virginia 22217

Naval Electronics Laboratory. Center 1 Copy
Advanced Software Technology Division
Code 5200
San Diego, California 92152

Mr. E. H. Gleissner 1 Copy
Naval Ship .esearch & Developoment Center
Computation and Mathematics Departent
Bethesda, Maryland 20084

Captain Grace M. Hopper 1 Copy
Naval Data Automation Commnd
Code 00H
WVashington Navy Yard
Washington, DC 20374

Advanced Research Projects Agency I Copy
Enformation Processing Techniques
1400 Wilson Boulevard
Arlington, Virginia 22209

Dr. Stuart L. Brodsky 1 Copy
Office of Naval Research
Code 432
Arlington, Virginia 22217

Prof. Fouad A. Tobagi
Computer Systems Laboratory
Stanford Electronics Laboratories
Department of Electrical Engineering
Stanford University
Stanford, CA 9430S


